每个老师需要在上课前弄好自己的教案课件,没有写的老师就需要抓紧完成了。教案是教育教学工作的重要规范和标准。留学群编辑根据您提出的要求特别为您整理了一篇“反比例函数教案”,下文内容仅供参考使用!
反比例函数教案 篇1
反比例函数的图像和性质
反比例函数是一种重要的数学函数,通常用于描述两个量之间的关系,例如,一个物品的价格随着销量的增加而下降。这种函数通常用形如f(x) = k/x的表达式来表示。其中,k是一个常数,x是自变量,f(x)是函数的值。
反比例函数的图像
反比例函数的图像形状与x轴和y轴之间的角度有关,通常表现为一条经过原点的倾斜的直线,其斜率与常数k有关。当x趋近于无穷大时,函数的值趋近于零;而当x趋近于零时,函数的值趋近于正无穷大。这样的函数图像通常被称为“双曲线”。
反比例函数的性质
反比例函数具有一些重要的性质,这些性质使得它在实际应用中非常有用。其中一些性质包括:
1. 反比例函数的定义域是除了0以外的所有实数。
2. 反比例函数的值域是除了0以外的所有实数。
3. 反比例函数在x=0处不连续,因为在0处函数值为无限大。
4. 反比例函数的导数是负的,意味着函数的斜率是单调递减的。
应用举例
反比例函数在实际应用中非常常见。其中一些应用包括:
1. 电阻、电容、电感等的阻抗随频率的变化。
2. 弹簧的弹性随伸长程度的变化。
3. 燃油消耗量与速度的关系。
4. 借款利息随借款金额的变化。
结论
反比例函数是一种常见的函数类型,它在实际应用中非常有用。反比例函数的图像形状非常特殊,而且具有许多重要的数学性质。因此,理解反比例函数的图像和性质是学习数学和进行实际应用的重要一步。
反比例函数教案 篇2
【教学目的】
1、知识目标:经历观察、归纳、交流的过程,探索反比例函数的主要性质及其图像形状。
2、能力目标:提高学生的观察、分析能力和对图形的感知水平。
3、情感目标:让学生进一步体会反比例函数刻画现实生活问题的作用。
【教学重点】
探索反比例函数图象的主要性质及其图像形状。
【教学难点】
1、准确画出反比例函数的图象。
2、准确掌握并能运用反比例函数图象的性质。
【教学过程】
活动1、汇海拾贝
让学生回忆我们所学过得一次函数y=kx+b(k≠0),说出画函数图像的一般步骤。(列表、描点、连线),对照图象回忆一次函数的性质。
活动2、学海历练
让学生仿照画一次函数的方法画反比例函数y=2/x和y=—2/x的图像并观察图像的特点
活动3、成果展示
将各组的成果展示在大家的.面前,并纠正可能出现的问题。
活动4、行家看台
1.反比例函数的图象是双曲线
2.当k>0时,两支双曲线分别位于第一,三象限内当k
3.双曲线会越来越靠近坐标轴,但不会与坐标轴相交
活动5、星级挑战
1星:
1、反比例函数y=—5/x的图象大致是()
2、函数y=6/x的图像在第象限,函数y=—4/x的图像在第象限。
2星:
1、函数y=(m—2)/x的图像在二、四象限,则m的取值范围是
2、函数y=(4—k)/x的图像在一、三象限,则k的取值范围是
3星:
1、下列反比例函数图像的一个分支,在第三象限的是()
a、y=(3—π)/xb、y=2—1/xc、y=—3/xd、y=k/x
2、已知反比例函数y=—k/x的图像在第二、四象限,那么一次函数y=kx+3的图像经过()
a、第一、二、三象限b、第一、二、四象限
c、第一、三、四象限d、第二、三、四象限
4星:
1、在同一坐标系中,函数y=—k/x和y=kx—k的图像大致是
2、反比例函数y=ab/x的图像在第一、三象限,那么一次函数y=ax+b的图像大致是
5星:
1、反比例函数y2m
1xm28,它的图像在一、三象限,则2、反比例函数y
活动6、回味无穷k4k2,它的图像在一、三象限,则k的取值范围是x
1、反比例函数的图象是双曲线
2、当k>0时,两支双曲线分别位于第一,三象限内当k
3、双曲线会越来越靠近坐标轴,但不会与坐标轴相交活动
7、终极挑战
如图,矩形abcd的对角线bd经过坐标原点,矩形的边分别平行于坐标轴,点c在反比例函数y=(k2—5k—10)/x的图像上,若点a的坐标是(—2,—2)则k的值为
反比例函数教案 篇3
尊敬的各位考官,大家好,我是X号考生,今天我说课的题目是《反比例函数》。
新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。
一、说教材
首先来谈一谈我对教材的理解。
本节课选自人教版初中数学九年级下册第二十六章第一节《反比例函数》,它是在学生已经学习正比例函数、一次函数、二次函数的基础上进行教学的。教材通过几个生活实例给出反比例函数关系,通过观察函数解析式发现其特点并归纳概念,然后进行相关知识的学习,为后面研究反比例函数的图象和性质以及高中学习更复杂的函数打下基础,所以本节课起着承上启下的作用。
二、说学情
接下来谈谈学生的实际情况。本阶段的学生已经具备了一定的分析能力和观察能力,但是思考问题还不够全面,故而仍需要老师的引导,在授课过程中我会注意这一点,选择灵活多变的教学方式。
三、说教学目标
根据以上对教材的分析以及对学情的把握,我制定了如下三维教学目标:
(一)知识与技能
理解并掌握反比例函数的概念及自变量取值范围,能用反比例函数解决简单问题。
(二)过程与方法
经历反比例函数一般形式及概念的得出过程,提升观察能力和总结归纳能力。
(三)情感、态度与价值观
体会数学与生活的联系,激发学习数学的兴趣。
四、说教学重难点
在教学目标的实现过程中,教学重点是:反比例函数的概念;教学难点是:反比例函数的概念的形成过程,自变量的取值范围。
五、说教法和学法
为了突破重点,解决难点,顺利达成教学目标,本节课我将采用激、导、探的教学方法,让学生带着问题学、在探索中学、在合作交流中学。
反比例函数教案 篇4
教学目标
(1)进一步体验现实生活与反比例函数的关系。
(2)能解决确定反比例函数中常数志值的实际问题。
(3)会处理涉及不等关系的实际问题。
(4)继续培养学生的交流与合作能力。重点:用反比例函数知识解决实际问题。
难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。教学过程
1、引入新课
上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨
2、提出问题、解决问题
(1)审完题后,你的切入点是什么,
由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t>0.t
(2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)
(3)明确了问题的区别,那么第二问怎样解决
根据反比例函数v=240(t>0),当t=5时,v=48。即每天至少要48吨。这样做的答t
案是不错的.,这里请同学们再仔细看一下第二问,你有什么想法。实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0 3、巩固练习 例2某蓄水池的排水管道每小时排水8 m3,6 h可将满池水全部排空。 (1)蓄水池的容积是多少 (2)如果增加排水管,使每时的排水量达到q(m3),将满池水排空所需时间为t(h),求q与t之间的函数关系式。 (3)如果准备在5 h内将满池水排空,那么每小时排水量至少为多少 (4)已知排水管的最大排水量为每时12 m3,那么最少多长时间可将满池水全部排空 这个巩固练习前三问与例题类似,设置第四问是为了与第一堂课相衔接,使学生学会将函数关系式变形。授课时,教师要对第四问进行细致分析。由学生板书,师生分析,为小结作准备。 4、小结让学生以小组为单位进行合作交流,总结出本节课的收获与困惑,而后师生共同得出结论: (1)学习了反比例函数的应用。 (2)确定反比例函数时,先根据题意求出走,而后根据已有知识得出反比例函数。 (3)求“至少”“最多”值时,可根据函数的性质得到。 5、作业设计①必做题: (1)课本第61页第2题。 (2)某打印店要完成一批电脑打字任务,每天完成75页,需8天,设每天完成的页数y,所需天数x。问y与x是何种函数关系若要求在5天内完成任务,每天至少要完成几页
反比例函数教案 篇5
本节课是在学习了反比例函数的概念,反比例函数的图像和性质等相关知识的基础上引入的。首先创设问题情境,展示反比例函数在实际生活中的应用情况,激发学生的求知欲和浓厚的`学习兴趣。接下来主要讨论了反比例函数在体积、面积这样的实际问题中的应用。分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
知识与技能
1、能灵活列反比例函数表达式解决一些实际问题。
2、能综合利用几何、方程、反比例函数的知识解决一些实际问题。
过程与方法
1、经历分析实际问题中变量之间的关系,建立反比例函数模型,进而解决问题。
2、体会数学与现实生活的紧密联系,增强应用意识,提高运用代数方法解决问题的能力。
情感态度与价值观
体验反比例函数是有效地描述现实世界的重要手段,认识到数学是解决实际问题和进行交流的重要工具。
重点:掌握从实际问题中建构反比例函数模型。
难点:从实际问题中寻找变量之间的关系。关键是充分运用所学知识分析实际情况,建立函数模型,教学时注意分析过程,渗透数形结合的思想。
反比例函数教案 篇6
教学目标:
1.能运用反比例函数的相关知识分析和解决一些简单的实际问题。
2.在解决实际问题的过程中,进一步体会和认识反比例函数是刻
画现实世界中数量关系的一种数学模型。
教学重点运用反比例函数解决实际问题
教学难点运用反比例函数解决实际问题
教学过程:
一、情景创设
引例:小丽是一个近视眼,整天眼镜不离鼻子,但自己一直不理解自己的眼镜配制的原理,很是苦闷,近来她了解到近视眼镜的度数y(度)与镜片的焦距为x(m)成反比例,并请教师傅了解到自己400度的近视眼镜镜片的焦距为0.2m,可惜她不知道反比例函数的概念,所以她写不出y与x的函数关系式,我们大家正好学过反比例函数了,谁能帮助她解决这个问题呢?
反比例函数在生活、生产实际中也有着广泛的应用。
例如:在矩形中S一定,a和b之间的关系?你能举例吗?
二、例题精析
例1、见课本73页
例2、见课本74页
例3、某气球内充满一定质量的气体,当温度不变时,气球内气体的.气压p(千帕)是气球体积V(米3)的反比例函数(1)写出这个函数解析式(2)当气球的体积为0.8m3时,气球的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积不小于多少立方米?
四、课堂练习课本P74练习1、2题
五、课堂小结反比例函数的应用
六、课堂作业课本P75习题9.3第1、2题
七、教学反思
更多初二数学教案,请点击