每位教师都需要撰写教案课件,以便上好课。但是,教案课件中的知识点需要设计得好。为了适应学生反应多样性的特点,需要调整教学策略。本文将从多个角度全面阐述并探讨“概率统计课件”,希望您能从中获得有用的信息!
概率统计课件【篇1】
教学目标:
1、经历收集数据、整理数据、分析数据的活动,体现统计在实际生活中的应用。
2、在运用统计知识解决实际问题的过程中,发展统计观念。
教学重点和难点:
发展统计观念
教学准备:
投影片
教学过程:
一、创设情境
我们班要和希望小学的六(1)班建立手拉手班级。你准备怎样向他们介绍我们班的情况呢?
(1)列出几个你想调查的问题,全班交流后,选择3个问题开展调查。
(2)你需要收集哪些数据?与同伴交流收集数据的方法。
(3)实际开展调查,把数据记录下来,并进行整理。
(4)分析上面的数据,,你能够得到到哪些信息?
【设计意图】教师注重在以下方面引导:第一,调查问题的提出。教师可以引导学生调查他们在以下比较感兴趣的问题。需要注意的是,学生提出的问题的意识是非常重要的,对于没有采纳的问题,教师可以通过多种评价方式激励学生。第二,组织讨论需要收集那些数据以及收集数据的方法。第三,组织小组有效的开展收集和整理数据的活动。统计活动往往需要小组合作进行,教师应引导学生讨论小组如何分工、如何实施调查和记录数据、如何整理数据等。第四,组织学生对数据进行比较充分的讨论。第五,引导学生回顾统计活动,使学生体会到,在统计活动中我们一般经历提出问题收集数据整理数据分析数据做出决策的过程。
二、收集在生活中应用统计的例子,并说说这些例子中的数据报告诉人们哪些信息?
例如,调查我们班级近视情况,这个统计活动既可以帮助学生建立统计观念,也可以引导学生探讨近视的原因,改善不良习惯。
也可以选择班级同学的身高、体重、姓氏、喜欢的颜色等开展统计调查。
【设计意图】重点让学生体会本次统计数据给我们带来的信息,从而引导做出相应的决策。
三、教师空间(针对班级情况适当补充)
作业设计:教师可以组织一次班会活动,目的是增进同学之间的互相了解和交流。首先让学生们自己选题,希望了解哪些信息:同学们每天怎么来上学?;同学们喜欢读哪类图书?;同学们的爱好是什么?;我们最喜爱的运动是什么?;我们最喜爱的动物是什么?然后让学生们分组去调查收集数据,用表格归纳整理,并且制成统计图。
【评析】知识源于生活,同时又能改善生活。内容设计结合了学生的生活经验,可以说统计与概率的教学过程就是学生亲近生活的过程。这样大大增强了学习数学的兴趣。同时,同学们深深体会到生活中的许多问题都可以用统计的知识来解决,而且大家在合作的过程中并不感到有什么太大的困难,这样的问题就比较切合学生的知识水平,比较贴近学生的生活实际。让学生感受到生活中处处充满数学,提高了学生学习数学的兴趣,培养了解决问题的意识和能力。
【困惑】教师在统计与概率教学中课堂活动难以组织。
统计教学中课堂活动一般是收集小组学生的相关数据、正字统计法、填统计表、绘制各种统计图等活动。可是这些活动占用时间太多,组织太多的活动会影响教学任务的完成。概率游戏环节太多,但无非是掷硬币、摸彩球、玩转盘这些活动,虽然在教学要求的层次上和类型上有所不同,但活动的本质是相同的。这些活动难以控制,因此教学概率比统计难度更大。统计与概率教学中,组织学生开展课堂活动非常困难,一旦进行课堂活动,几乎需要对每个学生进行指导,时间都不允许。
概率统计课件【篇2】
第一,我要说的是同学们在学习概率论与数理统计的时候不要一头扎入古典概型的概率计算中不可自拔。概率论的第一部分就是关于古典概型与几何概型的计算问题,有很多问题是很复杂的,一旦陷入这一类问题的题海中,要么你的脑瓜会越来越聪明,要么打击你的信心,对概率论失去兴趣。一般同学都会处于后一种状态。那么怎么办呢?请转阅第二条。
第二,对概率论与数理统计的考点要整体把握。考研中,概率论的重点考查对象在于随机变量及其分布和随机变量的数字特征。所以对于第一条中所讲的古典概型与几何概型这部分,只要掌握一些简单的概率计算即可,把大量精力放在随机变量的分布上。数理统计的考查重点在于与抽样分布相关的统计量的分布及其数字特征。考研数学考试大纲数学三删除了对概率论与数理统计中的假设检验的要求,这算是较上一年大纲的一个大的变化,但如果同学们在复习的时候就是整体把握的,就会明白大纲的这点变化对自己的复习是没有影响的。这就是对一门课程整体把握的优势。
第三,在心理上重视。考研数学试题中有关概率论与数理统计的题目对大多数考生来说有一定难度,这就使得很多考完试的同学感慨万千,概率题太难了!同时也向学弟学妹们传达了概率题目难的信息。所以同学们在复习之前就已经有了先入为主的看法:概率比较难!但同学们没有注意到,在自己复习之初做的准备都是关于高等数学(微积分)的,在概率上的时间本身就不足。而且如果你的潜意识中觉得一件事情难的话,那么那件事情对你来说就真的很难。我一直认为,人的潜力是非常巨大的。这也与“有多少想法,就有多大成就”的说法相合。如果你相信自己,那么概率复习起来是简单的,考试中有关概率的题目也是容易的,数学满分不是没有可能的。那么,从现在开始,在心理上告诉自己:概率并不难!
概率统计课件【篇3】
重点知识回顾
概率
(1)事件与基本事件:
基本事件:试验中不能再分的最简单的“单位”随机事件;一次试验等可能的产生一个基本事件;任意两个基本事件都是互斥的;试验中的任意事件都可以用基本事件或其和的形式来表示.
(2)频率与概率:随机事件的频率是指此事件发生的次数与试验总次数的比值.频率往往在概率附近摆动,且随着试验次数的不断增加而变化,摆动幅度会越来越小.随机事件的概率是一个常数,不随具体的实验次数的变化而变化.
(3)互斥事件与对立事件:
事件 定义 集合角度理解 关系
互斥事件 事件 与 不可能同时发生 两事件交集为空 事件 与 对立,则 与 必为互斥事件;
事件 与 互斥,但不一是对立事件
对立事件 事件 与 不可能同时发生,且必有一个发生 两事件互补
(4)古典概型与几何概型:
古典概型:具有“等可能发生的有限个基本事件”的概率模型.
几何概型:每个事件发生的概率只与构成事件区域的长度(面积或体积)成比例.
两种概型中每个基本事件出现的可能性都是相等的,但古典概型问题中所有可能出现的基本事件只有有限个,而几何概型问题中所有可能出现的基本事件有无限个.
(5)古典概型与几何概型的概率计算公式:
古典概型的概率计算公式: .
几何概型的概率计算公式: .
两种概型概率的求法都是“求比例”,但具体公式中的分子、分母不同.
(6)概率基本性质与公式
①事件 的概率 的范围为: .
②互斥事件 与 的概率加法公式: .
③对立事件 与 的概率加法公式: .
(7) 如果事件A在一次试验中发生的概率是p,则它在n次独立重复试验中恰好发生k次的概率是pn(k) = Cpk(1―p)n―k. 实际上,它就是二项式[(1―p)+p]n的展开式的第k+1项.
(8)独立重复试验与二项分布
①.一般地,在相同条件下重复做的n次试验称为n次独立重复试验.注意这里强调了三点:(1)相同条件;(2)多次重复;(3)各次之间相互独立;
②.二项分布的概念:一般地,在n次独立重复试验中,设事件A发生的次数为X,在每次试验中事件A发生的概率为p,那么在n次独立重复试验中,事件A恰好发生k次的概率为 .此时称随机变量 服从二项分布,记作 ,并称 为成功概率.
统计
(1)三种抽样方法
①简单随机抽样
简单随机抽样是一种最简单、最基本的抽样方法.抽样中选取个体的方法有两种:放回和不放回.我们在抽样调查中用的是不放回抽取.
简单随机抽样的特点:被抽取样本的总体个数有限.从总体中逐个进行抽取,使抽样便于在实践中操作.它是不放回抽取,这使其具有广泛应用性.每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.
实施抽样的方法:抽签法:方法简单,易于理解.随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,…,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.
②系统抽样
系统抽样适用于总体中的个体数较多的情况.
系统抽样与简单随机抽样之间存在着密切联系,即在将总体中的个体均分后的每一段中进行抽样时,采用的是简单随机抽样.
系统抽样的操作步骤:第一步,利用随机的方式将总体中的个体编号;第二步,将总体的编号分段,要确定分段间隔 ,当 (N为总体中的个体数,n为样本容量)是整数时, ;当 不是整数时,通过从总体中剔除一些个体使剩下的个体个数N能被n整除,这时 ;第三步,在第一段用简单随机抽样确定起始个体编号,再按事先确定的规则抽取样本.通常是将加上间隔k得到第2个编号 ,将 加上k,得到第3个编号 ,这样继续下去,直到获取整个样本.
③分层抽样
当总体由明显差别的几部分组成时,为了使抽样更好地反映总体情况,将总体中各个个体按某种特征分成若干个互不重叠的部分,每一部分叫层;在各层中按层在总体中所占比例进行简单随机抽样.
分层抽样的过程可分为四步:第一步,确定样本容量与总体个数的比;第二步,计算出各层需抽取的个体数;第三步,采用简单随机抽样或系统抽样在各层中抽取个体;第四步,将各层中抽取的个体合在一起,就是所要抽取的样本.
(2)用样本估计总体
样本分布反映了样本在各个范围内取值的概率,我们常常使用频率分布直方图来表示相应样本的频率分布,有时也利用茎叶图来描述其分布,然后用样本的频率分布去估计总体分布,总体一定时,样本容量越大,这种估计也就越精确.
①用样本频率分布估计总体频率分布时,通常要对给定一组数据进行列表、作图处理.作频率分布表与频率分布直方图时要注意方法步骤.画样本频率分布直方图的步骤:求全距→决定组距与组数→分组→列频率分布表→画频率分布直方图.
②茎叶图刻画数据有两个优点:一是所有的信息都可以从图中得到;二是茎叶图便于记录和表示,但数据位数较多时不够方便.
③平均数反映了样本数据的平均水平,而标准差反映了样本数据相对平均数的波动程度,其计算公式为 . 有时也用标准差的平方———方差来代替标准差,两者实质上是一样的.
(3)两个变量之间的关系
变量与变量之间的关系,除了确定性的函数关系外,还存在大量因变量的取值带有一定随机性的相关关系.在本章中,我们学习了一元线性相关关系,通过建立回归直线方程就可以根据其部分观测值,获得对这两个变量之间的整体关系的了解.分析两个变量的相关关系时,我们可根据样本数据散点图确定两个变量之间是否存在相关关系,还可利用最小二乘估计求出回归直线方程.通常我们使用散点图,首先把样本数据表示的点在直角坐标系中作出,形成散点图.然后从散点图上,我们可以分析出两个变量是否存在相关关系:如果这些点大致分布在通过散点图中心的一条直线附近,那么就说这两个变量之间具有线性相关关系,这条直线叫做回归直线,其对应的方程叫做回归直线方程.在本节要经常与数据打交道,计算量大,因此同学们要学会应用科学计算器.
(4)求回归直线方程的步骤:
第一步:先把数据制成表,从表中计算出 ;
第二步:计算回归系数的a,b,公式为
第三步:写出回归直线方程 .
概率统计课件【篇4】
第1课时 统计与概率(1)
【教学内容】 统计表。
【教学目标】
使学生进一步认识统计的意义,进一步认识统计表,掌握整理数据、编制统计表的方法,学会进行简单统计。【重点难点】
让学生系统掌握统计的基础知识和基本技能。【教学准备】 多媒体课件。
【情景导入】 1.揭示课题
提问:在小学阶段,我们学过哪些统计知识?为什么要做统计工作? 2.引入课题
在日常生活和生产实践中,经常需要对一些数据进行分析、比较,这样就需要进行统计。在进行统计时,又经常要用统
计表、统计图,并且常常进行平均数的计算。今天我们开始复习简单的统计,这节课先复习如何设计调查表,并进行调
查统计。
【整理归纳】
收集数据,制作统计表。
教师:我们班要和希望小学六(2)班建立“手拉手”班级,你想向“手拉手”的同学介绍哪些情况? 学生可能回答:(1)身高、体重(2)姓名、性别(3)兴趣爱好
为了清楚记录你的情况,同学们设计了一个个人情况调查表。课件展示:
为了帮助和分析全班的数据,同学们又设计了一种统计表。六(2)班学生最喜欢的学科统计表
组织学生完善调查表,怎样调查?怎样记录数据?调查中要注意什么问题? 组织学生议一议,相互交流。指名学生汇报,再集体评议。
组织学生在全班范围内以小组形式展开调查,先由每个小组整理数据,再由每个小组向全班汇报。填好统计表。【课堂作业】
教材第96页例3。【课堂小结】
通过本节课的学习,你有什么收获? 【课后作业】
完成练习册中本课时的练习。
第1课时 统计与概率(1)(1)统计表
(2)统计图:折线统计图 条形统计图 扇形统计图
第2课时 统计与概率(2)
【教学内容】
统计与概率(2)。【教学目标】
1.使学生初步掌握把原始数据分类整理的统计方法 2.渗透统计意识。【重点难点】
能根据统计图提供的信息,做出正确的判断或简单预测。【教学准备】 多媒体课件。
【情景导入】
上节课我们复习了如何设计调查表,今天我们来一起整理一下制作统计图的相关知识。
【归纳整理】 统计图
1.你学过几种统计图?分别叫什么统计图?各有什么特征? 条形统计图(清楚表示各种数量多少)折线统计图(清楚表示数量的变化情况)扇形统计图(清楚表示各种数量的占有率)教师:结合刚才的数据例子,议一议什么类型的数据用什么样的统计图表示更合适?
组织学生议一议,相互交流。2.教学例4 课件出示教材第97页例4。
(1)从统计图中你能得到哪些信息? 小组交流。重点汇报。
如:从扇形统计图可以看出,男、女生占全班人数的百分率; 从条形统计图可以看出,男、女生分别喜欢的运动项目的人数;
从折线统计图可以看出,同学们对自己的综合表现满意人数的情况变化趋势。(2)还可以通过什么手段收集数据? 组织学生议一议,并相互交流。
如:问卷调查,查阅资料,实验活动等。
(3)做一项调查统计工作的主要步骤是什么? 组织学生议一议,并相互交流。
指名学生汇报,并集体订正,使学生明确并板书: a.确定调查的主题及需要调查的数据; b.设计调查表或统计表; c.确定调查的方法; d.进行调查,予以记录; e.整理和描述数据;
f.根据统计图表分析数据,作出判断和决策。【课堂作业】
教材第98页练习二十一第2、3题。【课堂小结】
通过本节课的学习,你有什么收获? 【课后作业】
完成练习册中本课时的练习。
第2课时 统计与概率(2)
做一项调查统计工作的主要步骤: ①确定调查的主题及需要调查的数据; ②设计调查表或统计表; ③确定调查的方法; ④进行调查,予以记录; ⑤整理和描述数据;
⑥根据统计图表分析数据,作出判断和决策。
第3课时 统计与概率(3)
【教学内容】
平均数、中位数和众数的整理和复习。【教学目标】
1.使学生加深对平均数、中位数和众数的认识。体会三个统计量的不同特征和使用范围。
2.使学生经历解决问题的过程,发展初步的推理能力和综合应用意识。3.灵活运用数学知识解决实际问题,激发学生的学习兴趣。【重点难点】
进一步认识平均数、中位数和众数,体会三个统计量的不同特征和使用范围。【教学准备】 多媒体课件。
【情境导入】
教师:CCTV-3举行青年歌手大奖赛,一歌手演唱完毕,评委亮出的分数是: 9.87,9.65,9.84,9.78,9.75,9.72,9.90,9.83,要求去掉一个最高分,一个最低分,那么该选手的最后得分是多少?
学生独立思考,然后组织学生议一议,然后互相交流。指名学生汇报解题思路。由此引出课题:
平均数、中位数、众数 【复习回顾】 1.复习近平均数
教师:什么是平均数?它有什么用处? 组织学生议一议,并相互交流。
指名学生汇报,并组织学生集体评议。使学生明确:平均数能直观、简明地反映一组数据的一般情况,用它可以进行不
同数据的比较,看出组与组之间的差别。课件展示教材第97页例5两个统计表。
①提问:从上面的统计表中你能获取哪些信息? 学生思考后回答
②小组合作学习。(课件出示思考的问题)a.在上面两组数据中,平均数是多少?
b.不用计算,你能发现上面两组数据的平均数大小吗? c.用什么统计量表示上面两组数据的一般水平比较合适? ③小组汇报。
第一组数据:平均数是(1.40+1.43×3+1.46×5+1.49×10+1.52×12+1.55×6+1.58×3)÷(1+3+5+10+12+6+3)≈1.50(m)
第二组数据:平均数是(30×2+33×4+36×5+39×12+42×10+45×4+48×3)÷40=39.6(kg)
④用什么统计量表示上面两组数据的一般水平比较合适?为什么? 组织学生议一议,相互交流。
学生汇报:上面数据的一般水平用平均数比较合适。因为它与这组数据中的每个数据都有关系。2.复习中位数、众数
(1)教师:什么是中位数?什么是众数?它们各有什么特征? 组织学生议一议,并相互交流。指名学生汇报。
使学生明白:在一组数据中出现次数最多的数叫做这组数据的众数。将一组数据按大小依次排列,把处在最中间位置上 的一个数(或最中间两个数据的平均数)叫做这组数据的中位数。
(2)课件展示教材第97页例5的两个统计表,提问:你能说说这两组数据的中位数和众数吗?
学生认真观察统计表,思考并回答。指名学生汇报,并进行集体评议。【归纳小结】
1.教师:不用计算,你能发现上面每组数据的平均数、中位数、众数之间的大小关系吗?
组织学生议一议,并相互交流。指名学生汇报并进行集体评议。
2.教师:用什么统计量表示两组数据的一般水平比较合适? 组织学生议一议,并相互交流。指名学生汇报。师生共同评议。师根据学生的回答进行板书。【课堂作业】
教材第98页练习二十一第4、5题,学生独立完成,集体订正。答案:
第4题:(1)不合理,因为从进货量和销售量的差来看,尺码是35、39、40三种型号的鞋剩货有些多。
(2)建议下次进货时适当降低35、39、40三种型号鞋的进货量,根据销货量的排名来看,每种型号的鞋的进货量的比
例总体上不会有大的变化。第5题:(1)平均数:(9.8+9.7×2+9.6×4+9.5+9.4×2+9.1)÷11≈9.55(分)(2)有道理,因为平均数与一组
数据中的每个数据都有关系,但它易受极端数据的影响,所以为了减小这种影响,在评分时就采取“去掉一个最高分和
一个最低分”,再计算平均数的方法,这样做是合理的。平均分:(9.7×2+9.6×4+9.5+9.4×2)÷9≈9.57(分)【课堂小结】
通过这节课的学习活动,你有什么收获?学生谈谈学到的知识及掌握的方法。
【课后作业】
完成练习册中本课时的练习。
第3课时 统计与概率(3)
平均数:能较充分的反映一组数据的“平均水平”,但它容易受极端值的影响。
中位数:部分数据的变动对中位数没有影响
众数:一组数据的众数可能不止一个,也可能没有。
第4课时 统计与概率(4)
【教学内容】
可能性的整理与复习。【教学目标】 1.使学生加深认识事件发生的可能性和游戏规则的公平性,会求简单事件发生的可能性,并会对事件发生的可能性作出
预测。
2.培养学生依据数据和事件分析并解决问题,作出判断、预测和决策的能力。3.使学生体验到用数学知识可以解决生活中的实际问题,激发学生的学习兴趣。【重点难点】
认识事件发生的可能性和游戏规则的公平性,会求简单事件发生的可能性,并会对事件发生的可能性作出预测,掌握用
分数表示可能性大小的方法。【教学准备】 多媒体课件。
【情景导入】
1.教师出示情境图。表哥:我想看足球比赛。表弟:我想看动画片。表妹:我想看电视剧。
教师:3个人只有一台电视,他们都想看自己喜欢的节目,那么如何决定看什么节目呢?必须想出一个每个人都能接受 的公平的办法来决定看什么节目。
提问:你能想出什么公平的办法确定谁有权决定看什么节目吗? 学生:抽签、掷骰子。2.揭示课题。
教师:同学们想出的方法都不错。这节课我们来复习可能性的有关知识。(板书课题)
【复习讲授】
1.教师:说一说学过哪些有关可能性的知识。(板书:一定、可能、不可能)
2.教师:在我们的生活中,同样有些事情是一定会发生的,有些事情是可能发生的,还有些事情是不可能发生的。下面
举出了几个生活中的例子,请用“一定”“可能”或“不可能”来判断这些事例的可能性。课件展示:
(1)我从出生到现在没吃一点东西。(2)吃饭时,有人用左手拿筷子。(3)世界上每天都有人出生。组织学生独立思考,并相互交流。指名学生汇报,并进行集体评议。3.解决问题,延伸拓展
(1)教师:用“一定”“不可能”“可能”各说一句话,在小组内讨论交流。指名学生汇报并进行集体评议。(2)课件展示买彩票的片段。
组织学生看完这些片段,提问:你有什么想法吗?
你想对买彩票的爸爸、妈妈、叔叔、阿姨说点什么呢? 【课堂作业】 1.填空。(1)袋子里放了10个白球、5个黄球和2个红球,这些球除颜色外其它均一样,若从袋子里摸出一个球来,则摸到()色球的可能性最大,摸到()色球的可能性最小。
(2)一个盒子里装有数量相同的红、白两种颜色的球,每个球除了颜色外都相同,摸到红球甲胜,摸到白球乙胜,若
摸球前先将盒子里的球摇匀,则甲、乙获胜的机会()。2.选择。
(1)用1、2、3三个数字组成一个三位数,组成偶数的可能性为()。A.B.C.D.(2)一名运动员连续射靶10次,其中两次命中十环,两次命中九环,六次命中八环,针对某次射击,下列说法正确的
是()。
A.命中十环的可能性最大 B.命中九环的可能性最大 C.命中八环的可能性最大 D.以上可能性均等
3.有一个均匀的正十二面体的骰子,其中1个面标有“1”,2个面标有“2”,3个面标有“3”,2个面标有“4”,1个
面标有“5”,其余面标有“6”,将这个骰子掷出。(1)“6”朝上的可能性占百分之几?(2)哪些数字朝上的可能性一样? 答案:
1.(1)白 红(2)相等 2.(1)A(2)D 3.(1)25%(2)标有“1”和“5”,标有“2”与“4”,标有“3”和“6”的可能性一样。【课堂小结】
通过这节课的学习,你有哪些收获?学生畅谈学到的知识和掌握的方法。【课后作业】
完成练习册中本课时的练习。
第4课时统计与概率(4)
一定 可能 不可能 必然发生 可能发生 不会发生
概率统计课件【篇5】
设计说明
1、重视提出启发性的问题,引导学生主动探究。
在教学时,首先帮助学生归纳整理统计的相关知识,然后提出一系列富有启发性的问题,让学生自己去思考,去探究,使学生的思维一直处于活跃状态,把学习的主动权真正交给学生。
2、重视对统计表的观察和分析。
在复习统计知识时,引导学生观察复式统计表,发现有价值的信息,从而正确地解决问题。同时引导学生通过观察,发现复式统计表的优点,让学生感受到不同形式的统计表的使用条件,从而联系实际恰当地选择统计表。
课前准备
教师准备PPT课件
学生准备复式统计表
教学过程
⊙导入复习
这节课我们一起复习复式统计表这部分知识。(板书课题)
⊙整理复习复式统计表的相关知识
1、复式统计表的优点和使用条件。
师:谁能说说在什么情况下可以使用复式统计表?复式统计表和单式统计表相比有哪些优点?
学生小组讨论后汇报:
(1)在反映两个(或多个)统计内容的数据时可以使用复式统计表。
(2)复式统计表可以更加清晰、明了地反映数据的情况以及两个(或多个)数据变化的差异,为统计工作带来了很大的益处和帮助。
2、复习复式统计表的制作。
(1)引导学生回顾复式统计表的结构。
课件展示一个复式统计表,学生观察后汇报:复式统计表一般包括:标题、日期、表格(表头、横栏、纵栏、数据)。
(2)回顾绘制复式统计表的方法。
学生以小组为单位交流,然后师生共同回顾绘制复式统计表的方法:
①确定统计表的名称,填写制表日期。
②确定统计表的行数和列数。
③制作表头,填写表头中各栏类别。
④填写数据并核对。
3、出示教材110页3题。
(1)学生独立解决前两个问题,汇报结果。
(2)引导学生提出其他数学问题,并解决。
设计意图:引导学生回顾有关复式统计表的知识,让学生构建知识网络,把所学知识系统化、条理化,充分体会复式统计表的使用条件和优点,培养学生的统计能力。
⊙联系实际,强化提高
1、三年级一班同学1分钟仰卧起坐成绩如下。你能根据下面的成绩完成统计表吗?你有什么发现?(单位:个)
男同学1分钟仰卧起坐成绩:
39 29 38 36 32 28 39 28 33 37
40 42 37 32 35 29 31 34 33 38
女同学1分钟仰卧起坐成绩:
32 30 27 40 33 28 35 36 35 41
33 29 38 36 28 34 29 23 31 22
三年级一班同学1分钟仰卧起坐成绩统计表
人数成绩/个
性别:男、女
40以上
36~40
30~35
30以下
概率统计课件【篇6】
从考研数学大纲颁布来看,不管数一还是数三,概率方面没有做一点改变,所以我们目前就根据近几年考研真题谈一下目前对概率与数理统计的复习:
尽管概率统计和线性代数所占分数比例完全相同。但是概率论与数理统计部分得分一般均低于线性代数部分,因为大多数考生在复习和答卷时,把概率论与数理统计放在最后,常因时间紧迫,思虑不周而造成准备不充分,进而导致答卷失误。概率论与数理统计部分是大多数考生在数学统考中的一个弱项,是关系考生在选拔性考试中竞争力强弱的关键一环,对中等水平的考生来说,尤为如此。我认为处于现阶段的考生在数学科目的复习安排上,要先从最薄弱的一环开始,也就是说,在目前整个数学课程复习之初,要按照考研大纲规定的内容,先将概率论与数理统计后面,要一节一节地复习,一个概念一个概念地领会,一个题一个题地做,以达到正确理解和掌握基本概念、基本理论和基本方法。要特别指出的是在这一阶段复习时,不要轻视对教科书中一般习题的练习,一定要配合各章节内容做一定数量的习题,总结一般题型的解题方法与思路。这一阶段一般最迟应在国庆节之前完成。尽管这一阶段仅仅是概率论与数理统计乃至数学全面复习的先导,但它是为开始全面冲刺复习打基础的阶段。在此过程中,不要过多地去追求难题、技巧,要脚踏实地、全面仔细地复习,从10年的真题告诉考生,凡是考纲上有的内容,就要不遗漏,出现掌握和会用的考点要弄会、搞透。这个阶段虽然涉及综合性提高性题型不多,但基础打得好将为下阶段全面冲刺复习创造一个有利前提,更何况,很多综合性、灵活性强的考题,其关键之处也在于考生是否能够适当运用有关的最基本概念、理论和方法。
下面我总结一下常考题型:
常有的题型有:填空题、选择题、计算题和证明题,试题的主要类型有:
(1)确定事件间的关系,进行事件的运算;
(2)利用事件的关系进行概率计算;
(3)利用概率的性质证明概率等式或计算概率;
(4)有关古典概型、几何概型的概率计算;
(5)利用加法公式、条件概率公式、乘法公式、全概率公式和贝叶斯公式计算概率;
(6)有关事件独立性的证明和计算概率;
(7)有关独重复试验及伯努利概率型的计算;
(8)利用随机变量的分布函数、概率分布和概率密度的定义、性质确定其中的未知常数或计算概率;
(9)由给定的试验求随机变量的分布;
(10)利用常见的概率分布(例如(0-1)分布、二项分布、泊松分布、几何分布、均匀分布、指数分布、正态分布等)计算概率;
(11)求随机变量函数的分布(12)确定二维随机变量的分布;
(13)利用二维均匀分布和正态分布计算概率;
(14)求二维随机变量的边缘分布、条件分布;
(15)判断随机变量的独立性和计算概率;
(16)求两个独立随机变量函数的`分布;
(17)利用随机变量的数学期望、方差的定义、性质、公式,或利用常见随机变量的数学期望、方差求随机变量的数学期望、方差;
(18)求随机变量函数的数学期望;
(19)求两个随机变量的协方差、相关系数并判断相关性;
(20)求随机变量的矩和协方差矩阵;
(21)利用切比雪夫不等式推证概率不等式;
(22)利用中心极限定理进行概率的近似计算;
(23)利用t分布、χ2分布、F分布的定义、性质推证统计量的分布、性质;
(24)推证某些统计量(特别是正态总体统计量)的分布;
(25)计算统计量的概率;
(26)求总体分布中未知参数的矩估计量和极大似然估计量;
(27)判断估计量的无偏性、有效性和一致性;
(28)求单个或两个正态总体参数的置信区间;
(29)对单个或两个正态总体参数假设进行显著性检验;
(30)利用χ2检验法对总体分布假设进行检验。
概率统计课件【篇7】
课型
复习课使用教师
作业设计
基础:
(1) 六位同学进行投篮比赛,投进球的个数分别为2,13,3,5,10,3.则这组数据的平均数是( ),中位数是( ),众数是( )。
(2) 路旁一池塘,平均水深1.50米.小明的身高是1.70米,不会游泳,他跳入池塘的结果是( )。
A.一定有危险 B.一定无危险 C.可能有可能无 D.以上答案都不对
2.综合:
1.若一组数据91,96,98,99,X.的众数是96,则平均数是______中位数是_______.
2.数据3,4,5,5,6,7的众数、中位数、平均数分别是_____、_____、_____.
3.下列三组数据:第一组:1,2,3,4,6,8第二组:2,3,5,5,7,9第三组:3,3,2,2,-1,-1.这三组数据的众数分别是多少?
拓展提升:
个体户张某经营一家餐馆,餐馆所有工作人员某个月的工资如下:张某6000元,厨师甲900元,厨师乙800元,杂工640元,服务员甲700元,服务员乙640元,会计820元。
(1) 计算工作人员的平均工资。
(2)计算出的的平均工资能否反映一般工作人员这个月收入的一般水平?
(3) 去掉张某的工资后,再计算平均工资,这个平均工资能代表一般工作人员这个月收入水平吗?
概率统计课件【篇8】
设计说明
由于数据的收集与整理和现实生活息息相关,因此本设计注重从熟悉的现实生活情境引入,激发学生的学习兴趣,使学生体会学习统计的必要性。同时让学生再次经历收集、整理、分析、决策的过程,培养学生收集数据、整理信息和分析数据的能力。
课前准备
教师准备: PPT课件
学生准备:纸卡
教学过程
⊙引入课题,明确目标
今天这节课我们复习数据的收集与整理。(板书课题)
⊙分工合作,梳理知识
1.引导学生小组合作,交流第一单元学习的内容。
2.组织学生汇报所回顾的知识。
(1)用调查法收集数据。
收集数据可以采用举手、起立、画“√”“○”作记号等方式,但无论选择哪种方式,都要做到不重复、不遗漏。
(2)用画“正”字法记录数据。
记录数据时的方法不唯一,可以采用画“正”字、画“√”、画“○”等方法。当我们要记录的数量越来越多时,圆圈、对号的个数也会越来越多,这样看上去就会比较乱,数的时候不好数,而用画“正”字法记录数据时,就很清楚,所以采用画“正”字法记录数据,既方便又快捷。
(3)认识统计表。
统计表就是将统计的结果用表格的形式展示出来的一种表格。统计表可以直接看出各种数据的多少,便于分析问题和解决问题。
3.引导学生自主整理知识结构,并展示知识结构图。
数据的收集与整理
4.提出问题。
(1)过渡:对以上的学习内容,你有什么疑问?
(2)组织学生质疑、释疑并交流整理知识的体会。
设计意图:根据二年级学生的年龄及心理特点,先引导学生在合作交流中,初步理清知识层次,激活学生的思维,使学生乐于合作,勇于探究。在此基础上,再给予学生充分的时间进行自主整理知识结构图,以便培养学生的复习、整理的能力,这样可以有效地调动学生的学习积极性。
⊙借助习题,回顾重点,强化提高
1.复习用调查法收集数据。
(1)课件出示习题:统计一下班级同学的出生月份情况。1~12月哪月出生的人数最多?哪月出生的人数最少?
(2)引导学生思考:要完成这项统计,你准备怎么办?引导学生找出一些容易操作的方法:举手或组内报名,小组汇报等。
(3)引导学生优化方法
概率统计课件【篇9】
教案设计
设计说明
由于数据的收集与整理和现实生活息息相关,因此本设计注重从熟悉的现实生活情境引入,激发学生的学习兴趣,使学生体会学习统计的必要性。同时让学生再次经历收集、整理、分析、决策的过程,培养学生收集数据、整理信息和分析数据的能力。
课前准备
教师准备PPT课件
学生准备纸卡
教学过程
引入课题,明确目标
今天这节课我们复习数据的收集与整理。(板书课题)0分工合作,梳理知识
一、引导学生小组合作,交流第一单元学习的内容。
二、组织学生汇报所回顾的知识。
用调查法收集数据。
收集数据可以采用举手、起立、画“"”作记号等方式,但无论选择哪种方式,都要做到不重复、不遗漏。
用画“正”字法记录数据。
记录数据时的方法不唯一,可以采用画正”字、画“V、画“需方法。当我们要记录的数量越来越多时,圆圈、对号的个数也会越来越多,这样看上去就会比较乱,数的时候不好数,而用画“正”字法记录数据时,就很清楚,所以采用画“正”字法记录数据,既方便又快捷。
认识统计表。
统计表就是将统计的结果用表格的形式展示出来的一种表格。统计表可以直接看出各种数据的多少,便于分析问题和解决问题。
三、引导学生自主整理知识结构,并展示知识结构图。
数据的收集与整理
四、提出问题。
过渡:对以上的学习内容,你有什么疑问?
组织学生质疑、释疑并交流整理知识的体会。
设计意图:根据二年级学生的年龄及心理特点,先引导学生在合作交流中,初步理清知识层次,激活学生的思维,使学生乐于合作,勇于探究。在此基础上,再给予学生充分的时间进行自主整理知识结构图,以便培养学生的复习、整理的能力,这样可以有效地调动学生的学习积极性。
借助习题,回顾重点,强化提高
1、复习用调查法收集数据。
课件出示习题:统计一下班级同学的出生月份情况。12月哪月出生的人数最多?哪月出生的人数最少?
引导学生思考:要完成这项统计,你准备怎么办?引导学生找出一些容易操作的方法:举手或组内报名,小组汇报等。
引导学生优化方法——选择简单的举手方法:每个同学只能选择一次,不能多选也不能遗漏。要做到不重复、不遗漏。
学生举手,教师记录,完成本题。
2、复习记录数据的方法。
(1)课件出示习题:
下面统计的是二(1)班同学第一小组最喜欢吃哪种水果的
情况。
王红
刘梅
石明
李飞
邓丽
孙楠
余辉
徐阳
刘芳
周曦
王菲
赵佳
杨彤
李莉
(2)小组讨论:针对上题,如何记录这些数据呢?
指名汇报,明确记录方法:方法不是唯一的,有很多,但是画“正”字法是最方便和快捷的。
教师出示表格,引导学生用画“正”字法统计数据。
3、复习统计表。
(1)课件出示习题:下面是二(3)班同学参加学校艺术节情况统计表。根据统计表回答问题。
项目:唱歌、绘画、演讲、舞蹈、人数
参加()的人数最多,参加()的人数最少。
参加()和()的人数同样多。
参加舞蹈的比参加唱歌的多()人。
(2)学生先合作完成,再指名汇报,明确思考方法:要把统计的数据进行对比,即可得出结果。
(3)课件出示条形统计图:二年级同学参加校运动会项目情况。(每人限一项,每人都参加校运动会)
项目:跳绳、踢毽子、跳远、跑步、人数。
概率统计课件【篇10】
教学内容
教科书第119~120页例2和第121页课堂活动,练习二十三的第5~7题。
教学目标
1.通过复习使学生能进一步熟练地判断简单事件发生的可能性。
2.通过复习使学生能熟练地用分数表示事件发生的概率,并且会用概率的思维去观察、分析和解释生活中的现象。
3.通过复习使学生进一步感受、了解数学在生活中的实际应用,以提高学生学数学、用数学的意识。
教学过程
一、导入
教师:在老师的盒子里有5个球,从中摸出1个球,如果摸到的球是红色就可获得奖品。你希望里面的球是些什么颜色,为什么?如果你是老师你会装些什么颜色的球?为什么?刚才的活动涉及我们学过的什么知识?这节课我们一起来复习可能性。
板书课题:概率复习。
二、回顾整理有关可能性的知识
(1)教师:有关可能性的知识你还记得哪些?请在小组内交流。
(2)请学生汇报,并请其他同学补充。
学生:事件发生的可能性是有大小的。
学生:有些事件的发生是确定的,有些则是不确定的。
学生:有些事件的发生是一定的,有些事件的发生是有可能的,还有些事件的发生是不可能的。
三、教学例2
1.复习体会简单事件发生的三种可能性
教师出示一副扑克,当众从中取走J,Q,K和大小王。
教师:现在从中任抽一张,请你判断下面事件发生的可能性。
(1)抽到的牌上的数比11小。
学生:一定发生,因为剩下的所有扑克点数都比11小。
(2)抽到的牌是黑桃Q。
学生:不可能发生,因为所有的Q都被拿走了。
(3)抽到的牌是方块2。
学生:有可能发生,因为方块2还在老师手中。
2.复习体会事件发生的可能性有多少种
教师:从老师手中的扑克中任意抽取一张,会有哪些可能的结果呢?
教师:按照花色分有黑桃、红桃、方块和梅花四种可能性。
教师:按照数字分有1到10共十种可能性。
3.用分数表示事件发生的概率
教师:抽到各种牌的可能性究竟是多少呢?请大家独立完成第120页算一算的5道题。
学生独立完成之后全班交流。
学生:抽到黑桃的可能性是14,因为一共只有四种花色的扑克;还可以这样理解,一共有40张扑克,其中有10张黑桃,所有抽到黑桃的可能性是14。
学生:抽到5的可能性是110,因为按照数字分只有1到10这10种可能,5占其中的一种,所以抽到5的可能性是110;也可以这样理解,40张扑克中有4张5,抽到5的可能性是110。
学生:抽到梅花A的可能性是140,因为在40张扑克中只有1张梅花A。
学生:抽到A和抽到梅花A的可能性不一样大,因为抽到A的可能性是110,抽到梅花A的可能性是140。
学生:在40张牌中任意抽1张抽到5的可能性是110,在10张黑桃中任意抽1张抽到5的可能性也是110。
四、完成课堂活动
(1)学生独立完成,如果有困难可以先让学生说一说1到20的奇数、偶数、质数、合数分别是哪些?
(2)集体交流。
学生:摸到奇数的可能性是12,摸到偶数的可能性是12,摸到质数的可能性是25,摸到合数的可能性是1120。
五、全课小结
教师:通过这节课的复习有什么收获?有什么疑问?有什么要提醒大家需注意的地方?
六、课堂练习
学生独立完成练习二十三的第5,6,7题。