2014年的考研考试离我们越来越近,复习也已经进入了紧张和冲刺时间,考生们也应该想到要报考什么学校了吧,留学群考研频道为您提供2014各校各科目考研大纲,根据考研大纲复习才能事半功倍。
891数学专业综合课考试大纲
请考生注意:
1、数学专业综合课试题含常微分方程、近世代数、概率论与数理统计、系统控制四门课程的内容,考生可任选其中二门课程的试题解答,多选无效。
2、每门课试题满分75分。
常微分方程考试大纲
一、基本内容与要求
(一) 初等积分法
1、 熟练掌握变量可分离方程、可化为变量分离方程的类型、一阶线性方程与常数变易法、全微分方程与积分因子等的解法。掌握一阶隐方程与参数表示。
2、 会应用降阶法解某些高阶方程。
3、 会建立简单的微分方程模型。
(二) 线性方程和线性方程组
1、 掌握线性微分方程(组)的一般理论.
2、 掌握常系数线性微分方程(组)的解法.
3、 能应用线性方程(组)解的结构对方程的解做简单定性分析.
4、 了解二阶线性方程的幂级数解法和Laplace方法。
5、 会应用二阶常系数线性方程分析振动现象。
6、会求二阶微分方程组的奇点及其类型
(三) 基本定理
1、掌握初值问题的存在、唯一性定理和解的延拓及解关于初值的连续、可微性定理
2、掌握解的存在、唯一性定理及证明。
近世代数考试大纲
一、基本内容与要求
(一)基本概念
1、理解集合与映射的概念,掌握集合之间的运算,能够在集合之间建立映射关系,并判断两个映射是否相同。
2、掌握代数运算与映射的关系,能够建立有限集合之间的运算表,并判断给定的运算是否满足结合律、交换律以及两种分配律。
3、掌握同态映射、同构映射和自同构的概念,理解同态与同态满射(满同态)的关系,并能判定映射是否是同态满射(满同态),掌握具有同态满射(满同态)的集合之间的联系。能够判定给定的映射和运算是否是同构关系,能建立两个集合之间的同构映射。
4、理解关系和等价关系的概念,掌握等价关系和分类之间的转换定理,熟练判定给定的关系是否是等价关系。并熟悉剩余类的基本特性,能够建立整数间给定模的剩余类。
(二) 群论
1、掌握群的等价定义和例子,理解左、右单位元,左、右逆元的意义,掌握有限群、无限群、群的阶和交换群的概念。充分掌握单位元、逆元的存在性和唯一性,了解消去律的定义,能熟练掌握群与阶的关系,会计算群元素的阶。
2、理解群同构、同态的定义,掌握一个群的自同构的集合也成群的证明,掌握群同态的有关性质,并能证明在同态满射下,单位元的像也是单位元,元a的逆元的像是a的像的逆元。
3、掌握循环群的定义和由生成元决定循环群的性质与特点,熟练掌握剩余类加群,并能证明任一循环群可以与整数加群或模为n的剩余类加群同构。以及与循环群同态的群的性质。
4、熟练掌握变换的符号的运用和变换的乘法,能证明可以成群的变换只包含一一变换,且单位元一定是恒等变换。了解变换群的定义和性质。掌握任何一个群都同一个变换群同构的定理的证明。掌握元素求逆等运算。
5、理解置换与置换群的定义与性质,掌握每一个n元置换都可以写成若干个互相没有共同数字(不相连)的循环置换(轮换)的乘积的证明与运用。理解有限群与置换群的同构关系。
6、掌握子群的定义,掌握群的子集成群的充分而且必要的条件与判定定理,并能掌握找出已知群的子群的一般方法,了解群与子群中的单位元与逆元的关系,以及子群与子群之间的关系。
7、掌握陪集的定义,以及与等价关系和分类之间的关系,了解子群与陪集之间的关系,并能证明有限群的阶能被元的阶整除的定理,以及阶为素数的群一定为循环群的证明。
8、 掌握不变子群(正规子群)的定义,能掌握一个群的子群是不变子群(正规子群)的充分必要条件的定理,理解商群的定义,能证明一个群同它的每一个商群同态的定理,了解核的定义,掌握两个具有同态关系的群之间子群或不变子群(正规子群)的象的性质。并能将子群或不变子群(正规子群)的性质运用到循环群、变换群等群之中。
9、掌握sylow定理的应用。
考研大纲汇总 | 考研英语大纲 | 考研政治大纲 | 考研数学大纲 | 考研专业课大纲 |