(三) 环与域
1、理解交换环的定义和例子,熟悉单位元、逆元和零因子的性质并能熟练运用。掌握消去律与零因子的关系。
2、了解除环的定义,能举出域的例子,除环与加群、乘群的关系。熟悉无零因子环中的计算规则,掌握无零因子环中特征的性质
3、理解子环、子除环的定义,并能写出子整环、子域的概念,了解同态、同构环之间的性质,了解多项式成环,熟悉多项式环中的未定元、次数以及系数、无关未定元的作用。
4、掌握理想的定义,理解理想的构成,以及零理想、单位理想和主理想的构成,能判断一个子环是否为理想,和理想是否为主理想。了解什么是最大理想,且和剩余类环的关联。
5、 掌握没有零因子的交换环一定是一个域的子环,了解商域的构成,并掌握同构的环的商域也同构的定理。理解主理想环的概念和引理,能证明主理想环是唯一分解环。
6、理解欧氏环的定义,理解欧氏环、整数环都是主理想环与唯一分解环的证明,并能证明域一定是一个欧氏环。
概率论与数理统计考试大纲
一、基本内容与要求
(一) 概率论
1、理解随机事件和样本空间的概念,掌握事件之间的关系与运算;理解并熟练掌握概率的古典定义;理解几何概率,概率的统计定义及公理化定义;熟练掌握概率的基本性质,会用于计算;理解并掌握条件概率的定义,事件独立性。熟练掌握乘法公式、全概率公式与贝叶斯公式及其应用;熟练掌握Bernoulli概型。
2、理解随机变量的概念;理解并熟练掌握分布函数、分布律、概率密度等概念及其性质,掌握分布函数与分布律,分布函数与概率密度之间的关系;掌握二项分布、Poisson分布、均匀分布、指数分布,熟练掌握正态分布,会查标准正态分布表;熟练掌握随机变量函数分布的求法。
3、熟练掌握随机变量的数学期望、方差及其求法。掌握特征函数的定义及性质,特征函数与期望和方差之间的关系,理解反演公式和唯一性定理。
4、理解二维随机变量及其分布的定义,会求边缘分布,掌握随机变量的独立性;掌握二维随机变量期望、方差、协方差、相关系数及其性质;理解条件分布和条件数学期望;会求二维随机变量函数的分布;理解二维随机变量特征函数及其性质;了解三维及三维以上随机变量的定义和分布;掌握n维正态分布定义及性质,χ2-分布、t-分布和F-分布。
5、理解大数定律和中心极限定理的统计背景,意义及其应用,了解依概率1收敛,依概率收敛及依分布收敛的意义和相互关系。
(二) 数理统计
1、掌握数理统计的基本概念;熟练掌握矩估计法和极大似然估计法;熟练掌握无偏估计、有效估计和相合估计;熟练掌握区间估计定义及其意义。
2、充分理解和掌握Neyman-Pearson假设检验的基本思想和方法;熟练掌握正态总体参数假设检验方法。
系统控制考试大纲
一、基本内容与要求
(一) 能控能观性
1、 掌握线性系统的基本描述方法及相应的运动分析方法。
2、 掌握能控性能观性的基本判据以及证明过程和应用方法。
3、 掌握能控分解、能观分解,以及能控能观分解和最小实现。
4、 理解离散系统能控性与能观性的基本判据及使用方法。
(二) 极点配置与观测器
1、 掌握能控性与极点配置的关系,以及极点配置的设计方法。
2、 掌握能观性与状态观测器的关系,以及分离定理。、
3、 掌握全维观测器和降维观测器的设计方法。
(三) 鲁棒与优化控制
1、 掌握线性二次型指标的最优控制设计方法。
2、 理解线性系统的解耦控制设计方法。
3、 理解不确定线性系统二次稳定的充要条件,以及鲁棒状态反馈设计的线性矩阵不等式方法。
考研网推荐链接:
考研大纲汇总 | 考研英语大纲 | 考研政治大纲 | 考研数学大纲 | 考研专业课大纲 |