留学群专题频道高中数学人教版教案栏目,提供与高中数学人教版教案相关的所有资讯,希望我们所做的能让您感到满意!

人教版高中数学教案模板范文

高中数学教案 人教版高中数学教案 人教版高中数学教案模板

  各位数学老师上课前会准备教案吗?你知道教案该怎么写吗?下面是由留学群小编为大家整理的“人教版高中数学教案模板范文”,仅供参考,欢迎大家阅读。

  人教版高中数学教案模板范文(一)

  教学目标

  1、掌握分析法证明不等式;

  2、理解分析法实质——执果索因;

  3、提高证明不等式证法灵活性.

  教学重点

  分析法

  教学难点

  分析法实质的理解

  教学方法

  启发引导式

  教学活动

  (一)导入新课

  (教师活动)教师提出问题,待学生回答和思考后点评。

  (学生活动)回答和思考教师提出的问题。

  [问题1]我们已经学习了哪几种不等式的证明方法?什么是比较法?什么是综合法? [问题 2]能否用比较法或综合法证明不等式:

  [点评]在证明不等式时,若用比较法或综合法难以下手时,可采用另一种证明方法:分析法。(板书课题)

  设计意图:复习已学证明不等式的方法。指出用比较法和综合法证明不等式的不足之处, 激发学生学习新的证明不等式知识的积极性,导入本节课学习内容:用分析法证明不等式。

  (二)新课讲授

  【尝试探索、建立新知】

  (教师活动)教师讲解综合法证明不等式的逻辑关系,然后提出问题供学生研究,并点评。帮助学生建立分析法证明不等式的知识体系。投影分析法证明不等式的概念。

  (学生活动)与教师一道分析综合法的逻辑关系,在教师启发、引导下尝试探索,构建新知。

  [讲解]综合法证明不等式的逻辑关系:以已知条件中的不等式或基本不等式作为结论,逐步寻找它成立的必要条件,直到必要条件就是要证明的不等式。

  [问题1]我们能不能用同样的思考问题的方式,把要证明的不等式作为结论,逐步去寻找它成立的充分条件呢?bet365备用器

  [问题2]当我们寻找的充分条件已经是成立的不等式时,说明了什么呢?

  [问题3]说明要证明的不等式成立的理由是什么呢?

  [点评]从要证明的结论入手,逆求使它成立的充分条件,直到充分条件显然成立为止,从而得出要证明的结论成立。就是分析法的逻辑关系。

  [投影]分析法证明不等式的概念。(见课本)

  设计意图:对比综合法的逻辑关系,教师层层设置问题,激发学生积极思考、研究。建立新的知识;分析法证明不等式。培养学习创新意识。

  【例题示范、学会应用】

  (教师活动)教师板书或投影例题,引导学生研究问题,构思证题方法,学会用分析法证明不等式,并点评用分析法证明不等式必须注意的问题。

  (学生活动)学生在教师引导下,研究问题,与教师一道完成问题的论证。

  例1 求证

  [分析]此题用比较法和综合法都很难入手,应考虑用分析法。

  证明:(见课本)

  [点评]证明某些含有根式的不等式时,用综合法比较困难。此例中,我们很难想到从“ ”入手,因此,在不等式的证明中,分析...

与高中数学人教版教案相关的高中教案

人教版高中数学必修4教案大全(汇总)

人教版高中数学必修4教案 数学必修4教案 高中数学教案

与高中数学人教版教案相关的高中教案

人教版高中数学必修2教案大全(汇总)

人教版高中数学必修2教案 高中数学必修2教案

  以下内容是由留学群编辑为大家精心整理的人教版高中数学必修2教案大全(汇总),欢迎阅读。更多数学教案请关注留学群教案栏目。

人教版高中数学必修2教案大全(汇总)
高中数学必修2《空间几何体》教案
高中数学必修2《空间几何体的三视图和直观图》教案
高中数学必修2《空间几何体的表面积与体积》教案
高中数学必修2《空间点、直线与平面之间的位置关系》教案

人教版高中数学必修5教案大全(汇总)

人教版高中数学必修5教案 高中数学必修5教案 高三数学教案
人教版高中数学必修5教案大全(汇总)

  我们教学生学数学,就是教他们发现数学来源于生活,并存在于我们的生活中,使学生能够在生活中更好的使用数学,把数学同生活融为一体,紧密地联系起来,运用数学知识,解决生活中的问题。下面是由留学群编辑为您整理的人教版高中数学必修5教案大全(汇总),欢迎查看。

人教版高中数学必修5教案大全(汇总)
高中数学必修5《正弦定理和余弦定理》教案
高中数学必修5《应用举例》教案
高中数学必修5《数列的概念与简单表示法》教案

人教版高中数学选修1-1教案大全(汇总)

人教版高中数学选修1教案 高中数学选修1教案 高中数学
人教版高中数学选修1-1教案大全(汇总)

  以往的教师在把握教材是,大都是有什么教什么,不能够灵活的使用教材。而今的数学教学要求把学生的生活经验带到课堂,要求在简单的知识框架和结构上创造性的使用教材,让课堂变得有血有肉。下面是由留学群编辑为您带来的人教版高中数学选修1-1教案大全(汇总),欢迎借鉴。

人教版高中数学选修1-1教案大全(汇总)
高中数学选修1-1《命题及其关系》教案
高中数学选修1-1《充分条件与必要条件》教案
高中数学选修1-1《简单的逻辑联结词》教案

高中数学教案设计

高中数学教案设计 高中数学教案范文

  留学网为您整理了高中数学教案设计,供您参考!

  【高中数学教案设计一】

  一、教学内容分析

  圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象.恰当地利用定义解题,许多时候能以简驭繁.因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

  二、学生学习情况分析

  我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

  三、设计思想

  由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情.在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率.

  四、教学目标

  1.深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

  2.通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

  3.借助多媒体辅助教学,激发学习数学的兴趣.

  五、教学重点与难点:

  教学重点

  1.对圆锥曲线定义的理解

  2.利用圆锥曲线的定义求“最值”

  3.“定义法”求轨迹方程

  教学难点:

  巧用圆锥曲线定义解题

  六、教学过程设计

  【设计思路】

  (一)开门见山,提出问题

  一上课,我就直截了当地给出——

  例题1:(1) 已知A(-2,0), B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是( )。

  (A)椭圆 (B)双曲线 (C)线段 (D)不存在

  (2)已知动点 M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是( )。

  (A)椭圆 (B)双曲线 (C)抛物线 (D)两条相交直线

  【设计意图】

  定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

  为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

  【学情预设】

  估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是...

高中数学教案范文三篇

高中数学教案 高中数学教案范文三篇

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。以下是留学群小编为您整理的高中数学教案范文三篇,供您参考,更多详细内容请点击教案栏目查看。

  篇一:

  一、教材分析

  (一)地位与作用

  数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面数列作为一种特殊的函数与函数思想密不可分;另一方面学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

  (二)学情分析

  (1)学生已熟练掌握_________________。

  (2)学生的知识经验较为丰富,具备了教强的抽象思维能力和演绎推理能力。

  (3)学生思维活泼,积极性高,已初步形成对数学问题的合作探究能力。

  (4) 学生层次参次不齐,个体差异比较明显。

  二、目标分析

  新课标指出“三维目标”是一个密切联系的有机整体,应该以获得知识与技能的过程,同时成为学会学习和正确价值观。这要求我们在教学中以知识技能的培养为主线,透情感态度与价值观,并把这两者充分体现在教学过程中,新课标指出教学的主体是学生,因此目标的制定和设计必须从学生的角度出发,根据____在教材内容中的地位与作用,结合学情分析,本节课教学应实现如下教学目标:

  (一)教学目标

  (1)知识与技能

  使学生理解函数单调性的概念,初步掌握判别函数单调性的方法;。

  (2)过程与方法

  引导学生通过观察、归纳、抽象、概括,自主建构单调增函数、单调减函数等概念;能运用函数单调性概念解决简单的问题;使学生领会数形结合的数学思想方法,培养学生发现问题、分析问题、解决问题的能力。

  (3)情感态度与价值观

  在函数单调性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。

  (二)重点难点

  本节课的教学重点是________________________,教学难点是_____________________。

  三、教法、学法分析

  (一)教法

  基于本节课的内容特点和高二学生的年龄特征,按照临沂市高中数学“三五四”课堂教学策略,采用探究――体验教学法为主来完成教学,为了实现本节课的教学目标,在教法上我采取了:

  1、通过学生熟悉的实际生活问题引入课题,为概念学习创设情境,拉近数学与现实的距离,激发学生求知欲,调动学生主体参与的积极性.

  2、在形成概念的过程中,紧扣概念中的关键语句,通过学生的主体参与,正确地形成概念.

  3、在鼓励学生主体参与的同时,不可忽视教师的主导作用,要教会学生清晰的思维、严谨的推理,并顺利地完成书面表达.

  (二)学法

  在学法上我重视了:

  1、让学生利用图形直观启迪思维,并通过正、反例的构造,来完成从感性认识到理性思维的质的飞跃。

  2、让学生从问题中质疑、尝试...

高中数学选修1-1《椭圆》教案

高中数学选修1教案 椭圆教案 高三数学教案
高中数学选修1-1《椭圆》教案

  高中数学选修1-1《椭圆》教案【一】

  一、教材分析

  (一)教材的地位和作用

  本节是继直线和圆的方程之后,用坐标法研究曲线和方程的又一次实际演练。椭圆的学习可以为后面研究双曲线、抛物线提供基本模式和理论基础。因此这节课有承前启后的作用,是本章和本节的重点内容之一。

  (二)教学重点、难点

  1.教学重点:椭圆的定义及其标准方程

  2.教学难点:椭圆标准方程的推导

  (三)三维目标

  1.知识与技能:掌握椭圆的定义和标准方程,明确焦点、焦距的概念,理解椭圆标准方程的推导。

  2.过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、类比、归纳问题的能力。liuxuequn.com

  3.情感、态度、价值观:通过主动探究、合作学习,相互交流,对知识的归纳总结,让学生感受探索的乐趣与成功的喜悦,增强学生学习的信心。

  二、教学方法和手段

  采用启发式教学,在课堂教学中坚持以教师为主导,学生为主体,思维训练为主线,能力培养为主攻的原则。

  “授人以鱼,不如授人以渔。”要求学生动手实验,自主探究,合作交流,抽象出椭圆定义,并用坐标法探究椭圆的标准方程,使学生的学习过程成为在教师引导下的“再创造”过程。

  三、教学程序

  1.创设情境,认识椭圆:通过实验探究,认识椭圆,引出本节课的教学内容,激发了学生的求知欲。

  2.画椭圆:通过画图给学生一个动手操作,合作学习的机会,从而调动学生的学习兴趣。

  3.教师演示:通过多媒体演示,再加上数据的变化,使学生更能理性地理解椭圆的形成过程。

  4.椭圆定义:注意定义中的三个条件,使学生更好地把握定义。

  5.推导方程:教师引导学生化简,突破难点,得到焦点在x轴上的椭圆的标准方程,利用学生手中的图形得到焦点在y轴上的椭圆的标准方程,并且对椭圆的标准方程进行了再认识。

  6.例题讲解:通过例题规范学生的解题过程。

  7.巩固练习:以多种题型巩固本节课的教学内容。

  8.归纳小结:通过小结,使学生对所学的知识有一个完整的体系,突出重点,抓住关键,培养学生的概括能力。

  9.课后作业:面对不同层次的学生,设计了必做题与选做题。

  10.板书设计:目的是为了勾勒出全教材的主线,呈现完整的知识结构体系并突出重点,用彩色增加信息的强度,便于掌握。

  四、教学评价

  本节课贯彻了新课程理念,以学生为本,从学生的思维训练出发,通过学习椭圆的定义及其标准方程,激活了学生原有的认知规律,并为知识结构优化奠定了基础。

  高中数学选修1-1《椭圆》教案【二】

  教学准备

  教学目标

  教学目标:1.掌握求适合条件的椭圆的标准方程的方法.

  2.理解椭圆的比值定义,椭圆的准线的定义.

推荐更多