一、工程问题基本概念及关系式
工程问题中涉及到工作量、工作时间和工作效率三个量。
工作量:指工作的多少,可以是全部工作量,在没有指明具体数量时,工作总量可视为已知量。一般来说,可设总量为“1”;部分工作量用分数表示。
工作时间:指完成工作的所需时间,常见的单位一般为小时、天。这里需要注意“单位时间”这个概念。当工作时间的单位是小时,那么单位时间为1小时;当工作时间的单位是天,那么单位时间为1天。
工作效率:指工作的快慢,也就是单位时间里所完成的工作量。工作效率的单位一般是“工作量/天”或“工作量/小时”。
工作量、工作时间、工作效率三个量之间存在如下基本关系式:
工作量=工作效率×工作时间;
工作效率=工作量÷工作时间;
工作时间=工作量÷工作效率。
解决基本的工程问题时,要明确所求,找出题目中工作量、工作时间、工作效率三量中的已知量,再利用公式求出未知量。
二、工程问题常考题型
(一)二人合作型
例题:
有甲、乙两项工程,张师傅单独完成甲工程需6天,单独完成乙工程需30天,李师傅单独完成甲工程需18天,单独完成乙工程需24天,若合作两项工程,最少需要的天数为:
A.16天 B.15天 C.12天 D.10天
(二)多人合作型
例题:
甲、乙、丙三个工程队的效率比为6∶5∶4,现将A、B两项工作量相同的工程交给这三个工程队,甲队负责A工程,乙队负责B工程,丙队参与A工程若干天后转而参与B工程。两项工程同时开工,耗时16天同时结束。问丙队在A工程中参与施工多少天?
A.6 B.7 C.8 D.9
解析:本题答案选A。由题意可设甲、乙、丙每日工作量分别为6、5、4,丙队参与A工程x天。根据A、B工作量相同列方程,6×16+4x=5×16+4×(16-x),解得x=6。
工程问题中常用特值法,经常将工作量设为“1”,但是特值法应该灵活使用,这样是为了简化计算。
两人或多人合作后,有可能会出现配合不好,各自的工作效率均降低;配合默契,各自的工作效率均提高。解这类问题时,要注意前后工作效率的变化。尤其需要注意这时的三量关系变为:合作后总的工作效率×合作时间=合作完成的工作量。
(三)水管问题
进水、排水问题本质上是工程问题的一种。
例题:
同时打开游泳池的A、B两个进水管,加满水需1小时30分钟,且A管比B管多进水180立方米。若单独打开A管,加满水需2小时40分钟。则B管每分钟进水多少立方米?
A.6 B.7 C.8 D.9
解析:本题答案选B。由题意可知A管比B管每分钟多进水180÷90=2立方米,设B管每分钟进水x立方米,则A管每分钟进水(x+2)立方米,依题意有90×(x+x+2)=160×(x+2),解得x=7。
行测更多解题思路和解题技巧,可参看 《2013年国家公务员考试一本通》、2013年公务员考试技巧手册。
行测真题 | 行测答案 | 行测答题技巧 | 行测题库 | 模拟试题 |