教案课件构成了教师职责的一部分,因此教师每日都会严格按照质量和时间把教案课件准备好。理解学生的反馈能够帮助教师更有效地识别出课堂中的问题。在此,我们将全方位为您解读“分数的基本性质课件”的相关信息,以下是我的观点供您借鉴!
分数的基本性质课件 篇1
教学内容:六年制小学数学第十册69页70页
教学目标:1、理解分数的基本性质。
2、初步掌握分数的基本性质。
3、培养学生观察、比较、综合、概括的能力和初步的逻辑推理能力。
教学重点:理解与掌握分数的基本性质。
教材分析:分数的基本性质是在学习了商不变性质及分数与除法的关系的基础上进行教学的。它是今后学习约分和通分的依据,是分数四则运算的重要基础知识,是学生准确进行分数加减法计算的依据。
设计意图:通过复习商不变的性质和分数与出发的关系,为学生探索新知提供了材料,作好了铺垫,也为后面沟通分数基本性质与商不变性质打下了基础。
在新知的引入,我设计了让学生动手操作的方法(折纸、涂色),调动学生的多种感观充分感知数学事实,来引导学生观察、思考,激发学生的求知欲,调动学生学习的积极性。
通过先进的电教手段,如:投影仪,电脑等多媒体辅助教学。用形象的电脑图象,以活泼的形式将抽象的数学概念转变为学生易于理解概念,激发学生的学习兴趣,结合一系列的具有针对性的提问,引导学生观察思考,共同讨论新知,自己归纳出分数变化的规律,即分于分母都乘以或除以相同的数,分数和大小不变。
通过电脑出示的画象的逐步引入,使学生加深对分数基本性质的理解,逐步建立清晰的概念。这样让学生参与概念形成的整个过程,有利于学生学习的主动性,发展学生的逻辑思维。
在练习的设计上,力求紧扣重点,做到新颖、多样、层次分明,难度由浅入深。第1、2题是基本练习,主要是帮助学生理解概念,并全面了解学生掌握新知识的情况。第3题是在第1、2题的基础上,进一步让学生进行巩固练习,加深对所学知识的理解。第4题通过游戏的形式,加深学生对分数基本性质的认识,激发学生学习的兴趣,活跃课堂气氛。第5题,判断练习,意在使学生加深对新知识的巩固,纠正容易出错的地方。第6题是思考题,是为了满足学有余力的学生的需要,意在发展学生的智能。在联系的过程中,也采用了电脑与投影及录音机的有机结合有效地提高了课堂效率。
教学过程:
复习旧知,导入新课
被除数除数=
根据12030=3填数
(1203)(403)=()
(120___)(4010)=4(复习商不变性质)
验证并结实课题
学生用准备好的两张纸,进行动手操作。(感知=)
教师再演示,引导学生发现、、、三个分数的大小相等。观察什么在变,什么不变。把单位1平均分的分数和取的分数,也就是分数的分子和分母发生了变化,而分数的大小不便,为什么分数的分子、分母在变,而分数的大小不变?它们的变化规律是什么?(引导学生带着问题去思考)
新授,探索新知
启发引导,揭示规律
(1)====
从左往右观察,探索分数的分子、分母的变化规律,引导学生去思考。讨论得出:分数的分子坟墓都乘以相同的数,分数的大小不变。
,分数的分子分母有什么变化?
呢?
它们的大小又怎样呢?想一想,小姐出规律:分子、分母都除以相同的数,分数的大小不变。
归纳性质
谁能把上面的分数的分子分母都乘以或除以相同的数。两句话合成一句话来说。分数的分子分母都乘以或除以相同的数,分数的大小不变。
这里指的相同的数是指什么数?
指出:分母是0的分数是没有意义的。假如分子、分母都乘以或都除以0,也是没有意义的。所以0除外。相同的数可以是自然数,也可以是小数,也可以是分数。
请全班同学将结语说完整,全班读。
小结:就是我们今天学习的内容:分数的基本性质。看书质疑。
勾出关键词语,帮助理解掌握。
(在新课的教学过程中,利用计算机,将各种图形(也就是单位1)用主动的分割形式在大屏幕上清楚地进行演示,提高学生学习的积极性,更好地理解本课的学习内容,有效地提高教学效率,使教学目标得以顺利地实施。)
巩固练习
在括号里填上适当的数使等式成立
几组相等分数的天空练习
(用计算机将题目演示在大屏幕上,全般一齐练习,再请个别学生说出答案,看答案是否和计算机演示的答案相同,全班同学来做小老师)
3、请找我的好朋友练习。(以游戏的形式来进行)
要求:(1)将几张写有分数的卡片发给几位同学,请他们看清楚上面的分数。
(2)练习开始,请有卡片的同学注意观察,和老师受伤卡片上分数大小相等的同学走出来,看谁最快最好。
(先将卡片上的分数用大屏幕显示出来,便于全班同学练习。)
4、判断对错
(1)==()
(2)==()
(3)==()
(4)==()
(这道题用计算机一题一题来演示,让全班学生能用所学的知识来进行判断,并能说出错在哪里,可以请个别同学来回答,如果答对了计算机回发出以示奖励的音乐;错了会告诉同学错了,再试一次。这道题的形式,充分运用了计算机的多功能作用,较生动活泼,引起学生的兴趣,提高教学效果。)
5、思考练习题
=
课堂总结
总结本课内容,复述分数的基本性质。
分数的基本性质课件 篇2
教学目的:
1、理解分数的基本性质;
2、初步掌握分数性质的应用;
3、培养学生观察——探索——抽象——概括的能力;
4、渗透事物是相互联系、发展变化的辩证唯物主义观点。
教学重点:
从相等的分数中看出变与不变,观察、发现、概括其中的规律。
教学难点:
形成对分数的基本性质的统一认知。
教学准备:多媒体,自制演示教具。
教学过程:
一、激趣引新:
1、有位老爷爷把一块地分给三个儿子。老大分到了这块地的1/3,老二分到这块地的2/6,老三分到这块地的3/9。老大、老二觉得自己很吃亏,于是三人就大吵起来。刚好阿凡提路过,问清争吵的原因后,哈哈的笑起来,给他们讲了几句话,三兄弟就停止了争吵。你知道阿凡提为什么会笑?他对三兄弟说了那些话?你想知道吗?这节课我们就来解决这个问题。
2、在下面的()中填上合适的数。
1÷2=(1×5)÷(2×())=(1÷())÷(2÷4)
同学们现在已经能用分数的知识来解决问题了。
二、启发引导,探索新知。
1、下面是六年级三个班的同学到三块同样大小面积的正方形地里去种树,哪个班种植的面积大一些呢?
通过图形的平移、旋转等方法看出三个班种植面积一样大。
2.引导观察得出结论。
(1)通过拼图得到1/2=2/4=4/8
(2)引导观察、比较,提出问题:分子,分母都不相同,它们的大小为什么相同呢?
(3)引导思考探索变化规律:
从左往右看:1/2=1×2/2×2=2/4=2×2/4×2=4/8
反过来看:4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
3.共同讨论,引导学生抽象概括出分数的基本性质:
(1)怎么做能使分数的分子和分母发生变化,而分数的大小都不变呢?
(2)变化时同时乘或除以小数可以吗?
(3)0可以吗?3/4=3×0/4×0=?(分数的分母不能为0,在除法里0不能作除数,分子和分母都乘或除以相同的数,这个数不能是0。)
归纳分数基本性质:分数的分子和分母都乘或除以相同的数(0除外)分数的大小不变。
4.学习分数的基本性质以后,感觉过去我们学过类似的性质是什么呢?(商不变的性质)
(1)练习在□中填上合适的数
1÷2=(1×5)÷(2×□)=(1×□)÷(1×4)
(2)你能把1÷2这个除法算式改写成分数形式?
你能用今天所学的知识解决老爷爷分地的问题吗?(学生交流、汇报)
5.组织练习
(1)判断:
1/5=1/5×3=1/5()
5/6=5×2/6×3=10/18()
8/12=8×4/12÷4=32/3()
2/5=2+2/5+2=4/7()
3/4=3÷0.5/4÷0.5()
分数的分子和分母都乘或除以相同的数,分数的大小不变。()
(2)画一画、填一填
(3)填空
1/2=1×()/2×()=6/()
10/24=10○()/24○()=()/12
15/60=()/203/()=9/12
6/18=()/()=()/()(有多少种填法)
6.通过练习在此性质中哪些是关键词?
7.巩固练习(选择你喜欢的一题来做)
(1)与1/2相等的分数有多少个?想象一下把手中正方形的纸无限地平分下去,可得到多少个与1/2相等的分数?
(2)9/24和20/32哪一个数大一些,你能讲出判断的依据吗?
三、课堂总结
今天这节课同学们学了分数的基本性质,有什么感想呢?回家讲给爸爸妈妈听好吗!同时希望同学们把今天所学的知识运用到今后的学习和生活中去,做一个生活的有心人。
四、课堂作业:练习十四第1——3题。
板书设计:
分数的基本性质
1/2=1×2/2×2=2/4=2×2/4×2=4/8
分数的分子和分母同时乘以一个不为0的数分数的大小不变
4/8=4÷2/8÷2=2/4=2÷2/4÷2=1/2
分数的分子和分母同时除以一个不为0的数分数的大小不变
综上所述分数的基本性质是:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变。
分数的基本性质课件 篇3
内容:P15、16例1、2 ,练习四第1-3题。
目标:
1.知识与技能:经历探索分数基本性质的过程、理解分数的基本性质。
2.过程与方法:能运用分数的基本性质,把一个分数化成指定分母或分子而大小不变的分数。
3.情感、态度与价值观:经历观察、操作和讨论等学习活动,体验数学学习的乐趣。
重点:正确理解与分析运用分数的基本性质。
过程:
一、创设情境,导入新课。
“大圣”分桃:
话说大圣从王母娘娘处偷来的蟠桃分给众猴。猴儿们好生欢喜。几日之后,所剩不多了,只见大圣那儿留着一个特大的蟠 桃准备独自享用。不料,它最宠爱的一只小猴还馋着要分享。大圣说:好吧,咱俩平分各一半。小猴小嘴一厥,不好不好,太少了!大圣把桃切大小一样的四块:“给,2块!”“不好不好还是太小了”,小猴还是不满意。“真难缠,还嫌少啊?”于是大圣把桃切成了大小一样的8块,扔给小猴4块:“再嫌少,本大王就不给了”小猴一看,4块,比1块多了3块!好极了!嘻嘻,谢大王!小猴欢天喜地地走了。同学们你们说,小猴真的比第一次多拿了吗?
二、师生共研、发现规律。
师生共同揭秘“分桃”内幕。
人分桃的全过程,我们可将“齐天大圣”的分桃秘招公著如下:
1÷2=1/2=2/4=4/8
从上面这三个分数的相等关系,你发现了什么?
从左往右看:
1/2 = 1×2 / 2×2 = 2/4
从右往左看:
2/4 = 2÷2 / 4÷2 = 1/2
1/2的分子、分母同乘2,分数大小不变;2/4的分子、分母同除以2,分数大小不变。
观察分子、分母的变化,同时归纳小结。
学生试,验证自己提出的观点是否正确。
小结:
分数的分子和分母同时乘上或者除以相同的数(零除外)分数的大小不变。
三、数学小报,再次验证。
1.指导阅读,并参照课本进行折纸(按小组活动)注意4张报纸要大小相同。
2.将折得的小报中数学趣题版用阴影显示出来。
3.将四张的折叠结果重叠,得出数学趣题版面大小。
4.针对式子进行口头表述。
四、理解性质、简单运用。
例2的教学
(1)出示例2:把3/4、15/24化成分母都是8而大小不变的分数。
请同学们理清题意,然后进行转化。
(2)反馈。
(3)质疑
让学生通过讨论,深化对分数大小不变的要求的理解。
(4)议一议
由于分数与除法的密切关系,所以分数的基本性质与除法的商不变性质是一致的。在实际应用中可以通用。
五、练习巩固、拓展提高。
1.课堂活动
2.提取第一题的结果,进行深入思考:
当我们应用分数的基本性质,把一个分数的分子和分母都乘或都除以一个非零的桢数时,大小是不是变了,分数单位呢?
结论:大小不变,分数单位要变。
六、全课总结:
这节课,我人们又发现了分数的什么奥秘?用自己的话说给同桌听听,还有什么要和老师及同学们说的?有问题吗?
七、作业:
练习四第1-3题。
分数的基本性质课件 篇4
教学目标
(一)理解和掌握分数的基本性质。
(二)能运用分数的基本性质把一个分数化成指定分母(或分子)而大小不变的分数。
(三)培养学生观察、分析和抽象概括的能力,渗透事物是相互联系,发展变化的辩证唯物主义观点。
教学重点和难点
(一)理解和掌握分数的基本性质。
(二)归纳分数的基本性质,运用性质转化分数。
教学用具
教具:投影片,三张相同的长方形纸,一面为白色,另一面分别给
学具:每位同学准备三张相同的长方形纸片。
教学过程设计
(一)复习准备
1.口答:(投影片)
根据 120÷30=4,不用计算直接说出结果:
(120×3)÷(30×3)=( );(120÷10)÷(30÷10)=( )。
2.说一说依据什么可以不用计算直接得出商的?
3.说出商不变的性质。
教师:除法有商不变性质,分数与除法又有关系,分数有没有类似的性质呢?下面就来研究这个问题。
(二)学习新课
1.分数基本性质。
(1)教师取出一张长方形白纸,说明这为单位“1”,再取出同样的两张白纸,重叠放在一起请学生观察,问:三张纸重叠后完全重合,说明什么?(三个单位“ 1”同样大)教师把三张纸分贴在黑板上。
教师请同学取出自己准备的三张长方形纸,并比一比是不是同样大。
教师:请分别把它们平均分成2份;4份,6份(折出来),并分别给其中的1份,2份和3份涂上颜色或画上阴影。然后把涂了颜色的部分用分数表示出来。
学生口答后,老师把黑板上的纸片翻面,露出涂了色的一面,板书:
教师:请比较这三个分数的大小?
你根据什么说这三个分数相等?
学生口答后老师用等号连结上面三个分数。
(2)教师:这几个分数的分子和分母都不相同,但三个分数的大小是相等的,下面我们来研究在保持分数大小不变的情况下,分子分母的变化有没有什么规律?
(3)请根据上面的研究,说一说你发现了什么规律?请概括地说一说。
2.把一个分数化成大小相等,而分子或分母是指定数的分数。
分子应怎样变化?谁随着谁变?
化?谁随着谁变?
教师:上面两个分数的变化依据是什么?
(2)口答练习:(学生口答,老师板书。)
教师:利用分数基本性质,可以把分数化成大小相等而分子或分母是指定数的分数。
(三)巩固反馈
1.口答:(投影片)
2.在括号里填上“=”或“≠”。(投影)
3.在( )里填上适当的数。(投影)
4.判断正误,并说明理由。
(四)课堂总结与课后作业
1.分数基本性质。
2.把分数化成大小相同而分子或分母是指定数的分数的方法。
3.作业:课本108页练习二十三,1,2,4,5。
课堂教学设计说明
分数基本性质是在分数大小不变的前提下研究分子、分母的变化规律。所以在教学过程中,抓住“变化”作为主线,设计思考题引导学生观察、对比、分析,使学生在变化中找出规律、概括出分数的基本性质。安排例2,是让学生运用规律使分数产生变化。这样,从两方面方面加深学生对分数基本性质的理解。
在学生掌握了分数基本性质后,安排他们举例讨论,以沟通分数基本性质和商不变性质之间的内在联系,便于学生能把新旧知识融为一体。
在整个学习过程中都是学生活动为主,这样有利于培养学生观察、分析和抽象概括的能力。
新课教学分为两部分。
第一部分学习分数基本性质。分三层,通过学生活动,学生从直观上认识到分子、分母不相同的分数有可能相等;研究分子、分母的变化规律;概括分数基本性质,并用商不变性质来说明。
第二部分是应用分数基本性质,使分数按要求进行变化。分两层,根据分母需要,确定分子、分母需要扩大或缩小的倍数;根据分子需要,确定分子、分母需要扩大或缩小的倍数。
分数的基本性质课件 篇5
尊敬的各位评委老师:
大家好!
我是xx号考生,今天我说课的内容是义务教育课程标准实验教科书青岛版小学数学五年级下册第二单元信息窗3的教学内容—分数的基本性质(板书)。
一、说教材
分数的基本性质是学生在学习了分数的初步认识,掌握了分数的意义,分数与除法的关系,真分数,假分数,带分数的基础上进行学习的。本节课通过设计科普展板的情境学习分数的基本性质,为今后学习分数四则运算和解决有关分数的问题打下基础。
二、说教学目标
(1)知识与技能目标:结合具体情境,理解和掌握分数的基本性质,能运用分数的基本性质找出与一个分数大小相等的分数。
(2)过程与方法目标:在探索分数的基本性质的过程中,培养学生观察、概括的能力,进一步发展学生的数感及合情推理能力。
(3)情感态度与价值观目标:运用分数的基本性质解决实际问题的过程中,使学生感受到数学与生活的密切联系,激发学生的学习兴趣,增强学生的自信心,培养学生的应用意识。
三、说教学重难点:
根据对教材的分析以及学生的特点,本节课我确定的教学重点是:理解和掌握分数的基本性质。
教学难点是:自主探索,发现,归纳分数的基本性质,运用分数的基本性质解决实际问题。
四、说教学方法
新课标指出教师是学习的组织者、引导者、合作者。根据这一理念,本节课我主要采用了情境教学法、引导发现法(实践操作法),这些方法能充分调动学生的积极性,激发学生的求知欲,培养学生的创新精神。
自主探究,合作交流、动手操作是本节课学生学习新知识的主要方法。学生在具体情境中从数学角度发现问题,提出问题,感受数学来自生活的道理。通过动手操作、动脑思考、合作交流使其获得成功的体验,加深对知识的理解和掌握。
五、说教学过程:
教育家布鲁纳说过:“认识是一种过程,而不是一种产品”。根据这一思想,本节课我以学生为立足点,设计如下教学过程:
(一)创设情境,提出问题
新课标提倡要创设情境,激发学生的积极性。课开始,我跟学生交流,你们参加科技活动时都设计过哪些科普展报呢?学生讨论交流后,我利用多媒体课件出示学校科教活动中同学们设计的科普展板的情境图,引导学生仔细观察每块展板文字与图片所占比例,从数学角度提出问题。学生观察思考后可能提出:“每块展板的图片部分占整个版面的几分之几?”等有价值的数学信息。
爱因斯坦说过:提出一个问题往往比解决一个问题更重要。通过生动形象的情境,让学生从数学角度提出问题,使学生产生认知的兴趣,调动学生自主探索解决问题的热情,从而有效开展数学学习活动。
(二)研究素材,猜想规律
一、教学第一个红点,学习分数的基本性质
教师出示问题:“每块展板图片部分占整个版面的几分之几?”,让学生独立解决。通过思考后学生得出:“把每块展板看作单位“1”,图片部分分别占展板的1/2,2/4,4/8。教师追问学生这三个分数有什么大小关系?学生通过自己的认识猜测大小后,教师让学生利用彩笔和纸条涂一涂,画一画分别表示出这三个分数,通过涂一涂,画一画,让学生展示交流,学生直观的发现这三个分数是相等1/2=2/4=4/8。这时,教师抓住时机提出问题:“分数大小不变,但分子,分母是按照什么规律变化的呢?“先让学生独立思考,小组交流,然后全班汇报。有的学生发现:“1/2的分子分母同时乘2就得到了2/4,分子分母同时乘以4就得到了4/8。而有的学生发现4/8的分子分母同时除以2就得到了2/4,同时除以4就得到了1/2(板书)。教师再写出一组分数2/5=6/15=12/30,让学生举这样的例子。请同学仔细观察这三组相等的分数,发现了什么?通过观察、讨论交流。学生发现:分子和分母同时乘以或除以相同的数,分数大小不变。教师随即向学生揭示,像这样一个分数的分子和分母同时乘以或除以相同的数,分数的大小不变;这就是分数的基本性质。教师引导学生质疑“为什么0除外”学生进行讨论,回答:分数的分子分母同时乘以或除以0,分数就没有意义。我对学生的回答进行肯定,进一步强调分数的基本性质。
数学学习特别关注学生的体验。这样的设计,让学生通过自主探索,动手操作,涂一涂,画一画真正体验分数的基本性质的形成,逐步理解分数基本性质的含义,使学生对所学知识有认同感。同时培养学生的动手操作、独立解决问题的能力。
二、教学绿点,对分数的基本性质进行巩固和应用
出示问题:“根据分数的基本性质,你能写出几个相等的分数”?学生可能写出2/3=8/12=10/15,也可能写出48/64=24/32=6/8让学生进行小组交流,说出自己写相等分数的依据和方法。学生交流后得出:“一个分数根据分数的基本性质,把分子分母同时乘以或除以同一个数,分数大小不变。
通过让学生写出几个相等的分数,使学生能初步应用分数的基本性质,加深对分数进本性质的理解和掌握。
三、讨论交流、验证规律
我引导学生回顾分数基本性质的学习过程,让学生根据规律验证是不是所有的分数经过这样的变化,大小都不变呢?学生对画有12个小正方形的长方形卡片上进行涂一涂、画一画,找出这些小正方形的4/12,1/3,通过涂一涂、画一画学生得出:4/12=1/3,从而进一步验证了分数的基本性质。
这样的设计,让学生通过动手操作,举例验证分数的基本性质,加强对分数基本性质的理解和巩固,培养学生的应用意识。
四、巩固拓展、应用规律
为了使学生掌握新知,锻炼能力,发展思维,我设计了如下练习题:
1、基础练习
自主练习1:先涂色,在比较大小。学生独立完成,使学生加深对分数基本性质的直观认识。
自主练习2、在()里填上合适的数。通过填合适的数,加深学生对分数基本性质的理解。
2、综合练习
自主练习3:通过这道题,使学生将所学的知识应用到实际中去,感受数学来自于生活的道理。
3、新旧对比,沟通联系
让学生回忆商不变的性质,并与本节课学习的分数的基本性质进行比较,使学生发现利用商不变的性质也能解释分数基本性质的存在,培养了学生初步的演绎推理能力,同时加深了学生对知识的理解。
五、总结反思,深化规律。
我带领学生总结本次课堂:同学们通过这节课你有什么收获?让学生从知识、方法、感受三个方面进行交流。
六、板书设计
x2 = 2/4 = x4
= x2 = 1/2
分数的分子和分母同时乘以或除以相同的数(0除外),分数的大小不变。这叫做分数的基本性质。
好的板书是一节课的精华,本节课我采用重点式的板书设计,将教材中最为重要的内容加以归纳概括,力求用简洁的文字表达清楚,层次明确,重点一目了然。
我的说课内容到此结束,诚心期待各位评委老师的批评指导,谢谢大家!
分数的基本性质课件 篇6
各位老师,大家好!今天我说课的内容是课程标准试验教科书数学五年级下册第四单元第三课时"分数的基本性质"。下面我从设计理念,教材,教法,学法几个方面进行讲课。
一、说设 计理念
1、以学生发展为本,着力强化个人主体意识,同时关注学生学习动机、兴趣等情感态度。
2、从学生已有的认知发展水平和知识经验出发,为学生提供充分从事数学活动的机会和充分的练习空间。
3、致力于改变学生的学习方式,关注过程,让学生经历知识的形成过程,感受验证、转化,以及"用数学学数学"等数学思想方法。
二、说教材
1、教学内容:
《分数的基本性质》一课是五年级下册第四单元的一个内容。这部分内容的学习是在学生学习了分数的意义、分数与除法的关系、商不变性质等知识的基础上进行教学的,它是以后学习约分、通分的依据。因此,分数的基本性质是本单元的教学重点之一。教材在讲解这一知识点时,应注意加强整数商不变性质的内在联系,这样既帮助学生理解了分数的基本性质,又沟通了新旧知识的内在联系。
2、学情分析:
学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。另外,本单元的知识内容概念较多,比较抽象,学生的抽象逻辑思维在很大程度上还需要直观形象思维的支撑。在数学教学中,化抽象为具体、直观,对于顺利开展教学是十分必要的。
3、教学目标:
(1)通过教学使学生理解和掌握分数的基本性质,能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数,再应用这一规律解决简单的实际问题。
(2)引导学生在参与观察、比较、猜想、验证等学习活动过程中,有条件、有根据的思考、探究问题,培养学生的抽象概括能力。
(3)渗透初步的辨证唯物主义思想教育,使学生受到数学思想方法的熏陶,培养乐于探究的学习态度。
3、教学重点:理解和掌握分数的基本性质。
4、教学难点:学习自主探索,发现和归纳分数的基本性质,以及应用它解决相应的问题。
6、教具学具:课件,三张同样大小的长方形纸条、彩笔。
三、说教法
"将课堂还给学生,让课堂焕发生命活力",为营造学生在教学活动中的独立、自主的学习空间,让学生成为课堂的主人,本着这样的指导思想,以及学生的认知规律,我采用的教学方法主要有:
1、实际操作法
指导学生亲自动手折一折,涂一涂,比一比,从这些实践活动中加深学生对分数基本性质的理解,促使学生的感性认识逐步理性化。
2、直观演示法
先让学生充分感知,发现规律,然后比较归纳,最后概括出分数的基本性质,从而使学生的思维从形象思维过渡到抽象思维。
3、启发式教学法
运用知识迁移规律组织教学,用数学学数学,层层深入,促使学生在积极的思维中获取新知。
四、说学法
1、学生在学习分数的基本性质时,引导学生采用自主发现法、操作体验法,学生在纸条上涂出相应的阴影部分后,必然会对那三个图形进行观察和比较,从中有所发现。之后老师通过启发学生运用分数的基本性质,证明那三个分数大小相等,在尝试中发现,在实践中体验,从而加深学生对分数基本性质的理解。
2、在学习例题的过程中教师先采用启发法,再采用学生自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成练习题,达到检验自学的目的。