圆柱与圆锥课件

2023-09-20 10:52:32 圆柱圆锥课件圆柱课件

  希望这份“圆柱与圆锥课件”能够满足您的期望。每个老师在上课前会带上自己教案课件,因此老师会仔细规划每份教案课件重点难点。要知道教案课件也是老师上课实施过程程的依据。下面的观点仅供参考不能代表全部意见!

圆柱与圆锥课件 篇1

  一、填空题

  1.用一张长31.4厘米,宽20厘米的长方形的纸围成一个圆柱体,这张纸的长就是圆柱体的(),宽是圆柱体的()。圆柱体的侧面积是()。

  2、圆柱体的底面半径2厘米、高10厘米,它的侧面积是()平方厘米。

  3、一个圆柱体的底面半径是1分米、高3分米,它的表面积是()平方分米。

  4.一个圆柱体的侧面积是240平方厘米,高是5厘米,那么圆柱体的底面周长是()。

  5、底面积和高都相等的圆柱和圆锥,圆柱的体积是15立方分米,圆锥的体积是()。

  6、一个圆柱体的底面积是6.28平方厘米的圆柱切成两个同样大小的圆柱,表面积增加()

  7、一个圆锥体,底面积是24平方分米,高是30厘米,那么圆锥的体积是()立方分米。

  8、一个圆柱体的侧面积是12.56平方厘米,高是8厘米,底面周长是()厘米,底面半径是()厘米,底面积是()平方厘米,表面积是()平方厘米。

  9、用一张边长5厘米的正方形纸围成一个圆柱,这个圆柱的高是()立方厘米。

  10、一根电线杆底面周长50.24厘米,高10米,这根电线杆占地()平方厘米。

  11.一个圆柱和一个圆锥等底、等高,若圆锥的体积比圆柱少30立方分米,则圆锥的体积是()立方分米,圆柱体积是()。

  12、若圆锥的体积一定,圆锥的底面积和高成()比例。

  13、一个圆柱的底面积是1.2平方分米,体积是60立方厘米,高是()厘米。

  14、圆锥的体积等于和它等底、等高的圆柱体体积的,若圆锥体积是9.6立方分米,那么圆柱体积是()立方分米。

  15、一个圆柱体与一个圆锥体的底面积和高都相等。已知圆柱的体积是6立方米,那么圆锥的体积是();如果圆锥的体积是6立方米,那么圆柱的体积是()。

  16、一个圆柱和一个圆锥等底、等高,圆锥的体积比圆柱的体积少36立方厘米,圆柱的高是()。

  17、一个圆锥体的底面半径扩大2倍,高缩小为原来的一半,它的体积是原来体积的()。

  18、一个圆柱体,体积是立方米,和它等底、等高的圆锥体的体积是()。

  19、一个圆锥体高1.5米,底面周长是12.56米,体积是()。

  20、一个圆柱体的体积增加2立方米,那么与它等底、等高的圆锥体的体积是()。

  二、判断题

  1.圆柱两个底面之间的距离是圆柱的高,并且有无数条。()

  2、如果一个正方体和一个圆柱体底面周长相等,高也相等,则它们的体积也相等。()

  3、圆柱的底面半径扩大2倍,高缩小2倍,它的体积不变。()

  4、一个圆柱体直径扩大3倍,体积也扩大3倍。()

  5、圆柱体的体积和它的容积一样大。()

  6、圆柱的高是3厘米,与它等底、等高的圆锥体高是9厘米。()

  7、圆锥体比与它等底、等高的圆柱体体积小。()

  8、一个圆柱体比和它等底、等高的圆锥体的体积多。()

  9.圆柱的高是6厘米,和它体积相等,底面半径相等的圆锥的高是18厘米。()

  10.圆锥体的体积总是比圆柱体的体积小。()

  三、选择题

  1.一个圆柱形水桶的容积()体积。

  A相等B大于C小于D无法确定

  2、一个圆锥体的底面半径是2厘米,高是3厘米,刚容积是()立方分米。

  A37.68B0.03768C12.56.D0.01256

  3、一个圆柱体,底面周长是37.68厘米,高是2厘米,它的体积是()。

  A74.36立方厘米B226.08立方厘米C76.36立方厘米

  4.一个正方体的棱长是6分米,表面积为()平方分米。

  A36B216C72D108

  5、一个圆锥体与一个圆柱体,底面积和体积相等,圆锥体的高是9分米,圆柱体的高是()

  A3分米B27分米C9分米D34分米

  6、两个底面半径相等的圆锥体和圆柱体,它们的体积比是1∶4,已知圆柱的高是8厘米,那么圆锥的高是()。

  A2厘米B6厘米C18厘米D5厘米

  7、一个无盖的圆柱形水桶可以装水多少升?就是求它的()。

  A表面积B体积C容积D既可以说体积也可以说容积

  8、把一个圆柱形木棒削成一个最大的圆锥,削去部分的体积是原圆柱形木棒积体的()

  ABCD2倍

  9、两个圆锥体的高相等,甲圆锥体的底面半径是乙圆锥体底面半径的2倍。那么甲圆锥体的体积是乙圆锥体体积的()

  A2倍B4倍C6倍D8倍

  10.一个圆柱的高不变,底面半径扩大2倍,它的体积扩大()倍。

  A2B3C4D8

  四、计算

  五、应用题

  1、一个圆柱,底面半径是0.2米,高是35分米,它的侧面积是多少平方分米?

  2、一个圆柱,底面周长是25.12厘米,高是5厘米,这个圆柱体的表面积是多少平方厘米?

  3.做一个圆柱形鱼缸,底面直径是6分米,高5分米。

  (1)做这个鱼缸至少需多少平方分米的玻璃?(得数保留整数)

  (2)用这个鱼缸装满水,能装水多少千克?(1升水重1千克,得数保留整数)

  4、有两个底面半径相等的圆柱,高的比是3∶5,第一个圆柱体积是48立方厘米,第二个圆柱体的体积比第一个多多少立方厘米?

  5、一个圆柱形的玉米囤,从里面量底面周长是12.56米,高是4米,每立方米玉米的重量是560千克,这个玉米囤大约能装多少千克玉米?(得数保留整数)

  6、一堆煤呈圆锥形,底面直径是4分米,高是1.2米,这堆煤的体积是多少立方米?如果每立方米约重1.4吨,这堆煤约有多少千克?(得数保留整数)

  7、一个圆柱形茶杯,底面直径是12厘米,高15厘米,这个茶杯能装水多少立方厘米?

  8.有一圆柱形钢材,高是15米,侧面积是14.13平方米,这个圆柱形钢材的重量是多少吨?(每立方厘米钢重7.8克)

  9.一个圆锥形物体的体积是6.28立方分米,底面积为3.14平方分米,锥体的高是多少分米?

  10、一个圆锥形麦堆,底面周长12.56米,高1.2米,如果每立方米小麦重720千克,这堆麦子的送入粮库,还剩多少千克小麦?(得数保留整数)

圆柱与圆锥课件 篇2

  教学内容:

  P29页第1-3题,完成练习五。

  教学目标:

  1、复习,使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,掌握圆柱表面积、体积,圆锥体积的计算公式,能正确计算。

  2、学生的空间观念,培养学生有条理地对所学知识进行整理归纳的能力。

  教学重点:

  圆柱、圆锥表面积、体积的计算

  教学难点:

  圆柱、圆锥的特征和它们的体积之间的联系与区别

  教学过程:

  一、复习圆柱与圆锥的特征

  1、圆柱的特征

  (1)教师出示画有形状、大小以及摆放位置不同的几个圆柱的幻灯片.指名让学生回答:这些图形叫什么图形?(圆柱)有什么特点?

  (圆柱是立体图形,圆柱有上、下两个面叫做底面,它们是完全相同的两个圆。侧面是一个曲面.两个底面之间的距离叫做高.有无数条高。)

  2、圆锥的特征

  (1)圆锥有哪几个部分?有什么特点?

  (是立体图形,有一个顶点,底面是一个圆,侧面是一个曲面。从圆锥的顶点到底面圆心的距离,叫做圆锥的高。只有一条高。)

  (2)做第29页第1题

  二、圆柱的表面积

  1、出示画有圆柱的表面展开图的投影片.先让学生观察,然后让学生回答

  圆柱的侧面是指哪一部分?它是什么形状的?

  (长方形或正方形)

  圆柱的侧面积怎样计算?

  (底面的周长脳高)

  为什么要这样计算?

  (因为:底面的周长=长方形的长,高=长方形的宽)

  2、表面积是由哪几部分组成的?

  (圆柱的侧面积+两个底面的面积)

  3、第29页第2题中求圆柱表面积的部分。

  三、圆柱和圆锥的体积

  1、圆柱的体积怎样计算?

  (底面积脳高)计算公式是怎样推导出来的?

  (把圆柱切割开,拼成近似的长方体,使圆柱体的体积转化为长方体的体积。根据长方体的体积=底面积脳高,推出圆柱体的体积=底面积脳高)圆柱体的体积计算的字母公式是什么?(V=Sh)

  2、圆锥的体积怎样计算?

  (用底面积脳高,再除以3)计算圆锥体积的字母公式是什么?(V=1/3Sh)这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)

  3、做第29页第2题

  4、学生独立完成第29页第3题。(先思考用多少布料求什么?装多少水又是求什么?区分清所求的是圆柱的表面积或体积时再计算)

  四、课堂练习

  1、做练习五的第1题。(学生独立判断,并画出高,小组讨论订正)

  2、做练习五的第2题。

  (1)学生审题后思考:求用多少彩纸是求圆柱的什么?

  (2)指名板演,其他学生独立完成于课堂练习本上。

  3、做练习五第5题。(可建议学生用方程解答)

  一个圆锥形沙堆,度面积是28.26平方米,高是2,。5米。用这堆这堆沙在10米宽的公路上铺2米厚的路面,能铺多少米、

  4、有块正方形的木料,它的棱长是4分米,把这块木料加工成一个最大的圆柱,这个圆柱的体积是多少?若加工成最大的圆锥呢,它的体积又是多少立方分米呢?

  5、右图是一个粮仓,上面是圆锥形,下面是一个圆柱形,如果粮仓墙壁的厚度不计,这个粮仓的容积式多少立方米?上面圆锥的高是3米,圆柱的高是5米,底面直径8米。(图略)

  教学反思:

  在本节的教学设计中,本计划在引导学生回顾圆柱体积公式的推导过程时,引导学生想像:随着将圆柱的每一份分得越来越窄,越来越窄时,所拼成的长方体的长会逐渐变成一条直线,拼成的也将不再是一个近似的长方体,而是一个标准的长方体,进而渗透极限思想。但这个环节在实际教学中被忽略了。

  反思这节课的教学设计与实际教学过程,还有一些问题需要思考与改进。如

  怎样把握复习与新授的关系?

  圆柱和圆锥分别有哪些重要的面?有什么比较关键的线?有哪些比较特殊的点?这三个问题的研究,来对圆柱和圆锥从表面到内部的特征进行再认识。这样就打乱了教材中的设置的对这两个立体图形的研究顺序,这样的再认识是不是有新授的痕迹?本课的教学目标不仅要复习圆柱与圆锥的特征、表面积与体积的相关知识,还要引导学生认识复习的意义,沟通知识间的联系,渗透数学思想方法,培养学生运用数学思想方法解决问题的能力。在一节课中包含这么多的教学目标,是不是能一一达成,是不是有贪多嚼不烂的可能?

圆柱与圆锥课件 篇3

   教学内容:

  练习二第14页内容。

   教学目标:

  1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。

  2、培养学生良好的空间观念和解决简单的实际问题的能力。

   教学重、难点:运用所学的知识解决简单的实际问题。

   教学过程:

   一、复习

  1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高)

  2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2)

   二、实际应用

  1、练习二第7题

  (1)学生通过读题理解题意,思考“需要白铁皮多少平方米”是求几个面的面积?(侧面积)

  (2)指名板演,其他学生独立完成于课堂练习本上。

  (3)集中分析评讲。

  2、练习二第8题

  学生独立完成这道题,集体订正。

  3、练习二第9题

  指名板演,其他学生独立完成于课堂练习本上。

  4、练习二第10题

  (1)学生读题理解题意。

  (2)提问:这个“博士帽”是由哪几部分组成?分别求哪些面的面积?

  (3)学生自主完成。

  (4)集体评讲,注重后进生辅导。

  5、练习二第11题

  (1)学生读题。

  (2)提问:要想求“这根花柱上一共有多少朵花必须先求什么?。

  (3)学生独立完成

  6、练习二第12题

  (1)学生读题。

  (2)引导思考。

  (3)集体练习

  7、练习二思考题(学有余力学生完成。)

  引导思考:截成3段截了几次?一共多了几个面?几个什么样的面?那么表面积增加了多少平方厘米呢?如果截成4段、5段会做吗?接下来学生练习。

   三、课堂小结

  通过今天的练习,你对圆柱的侧面积和表面积有了哪些新的认识?

   四、课堂作业

  基础训练。

圆柱与圆锥课件 篇4

  预设目标:

  使学生比较系统地掌握本单元所学的立体图形知识,认识圆柱、圆锥的特征和它们的体积之间的联系与区别,发展学生的空间观念。

  教学过程:

  教师:在这个单元里,我们学习了两种新的立体图形:圆柱、圆锥,知道了它们的特征、学会了如何求出它们的体积等知识。并学会运用这些知识解决一些简单的实际问题。

  一、复习圆柱

  1、圆柱的特征。

  ⑴圆柱有什么特点?⑵做第91页第1题的上半题。

  2、圆柱的侧面积和表面积。

  ⑴教师:圆柱的侧面是指哪一部分?它是什么形状的?(长方形或正方形)

  圆柱的侧面积怎样计算?(底面的周长×高)

  为什么要这样计算?(底面的周长=长方形的长,高=长方形的宽)

  圆柱的表面积是由哪几部分组成的?(圆柱的侧面积+两个底面的面积)

  ⑵做第91页第2题的第⑴、⑵小题,第3题上半题求圆柱表面积部分。

  3、圆柱的体积。

  ⑴教师:圆柱的体积怎样计算?(底面积×高)计算的公式是怎样推导出来的。? 圆柱体的体积计算的字母公式是什么?(v=sh)

  ⑵做第91页第3题的上半题求圆柱体积部分。

  二、复习圆锥

  ⑴圆锥有什么特点?

  ⑵做第91页第1题的下半题和第2题的第⑶小题。

  2、圆锥的体积。

  ⑴教师问:怎样计算圆锥的体积?计算圆锥体积的字母公式是什么?

  这个计算公式是怎样得到的?(通过实验得到的,圆锥体的体积等于和它等底等高的圆柱体体积的三分之一)。

  ⑵做第91页第3题的下半题。

  三、课堂练习

  1、做练习二十三的第1题、第2题。

  学生独立做题,教师行间巡视,提醒学生看清题目后括号里的要求。

  四、创意作业。

  练习二十三的第3题。

圆柱与圆锥课件 篇5

  1、使学生在观察、操作、交流等活动中感知并发现圆柱和圆锥的特征,知道圆柱和圆锥的底面、侧面和高。

  2、使学生在活动中进一步积累认识立体图形的学习经验,增强空间观念,发展数学思考。

  教学难点:

  出示例1场景图,上面这些物体认识吗?分别是什么?如果将它们按形状分成两类,怎么分?如果给这两类物体起个名字,可以叫什么?

  ⑴生活中还有哪些物体的形状是圆柱形的?出示相关圆柱形实物和模型。

  ⑵引导观察:仔细观察这些圆柱,你能发现什么?在小组中交流自己的发现。

  ⑷认识圆柱各部分的`名称:

  教师先对照圆柱的直观模型介绍圆柱的底面、侧面和高,再让学生在实物模型上找到圆柱的底面、侧面和高。

  ⑴生活中还见过哪些圆锥形状的物体?

  ⑵仔细观察圆锥,你能发现什么?在小组中说一说。

  ⑶全班交流,教师相机板书:

  有一个顶点底面是圆形侧面是一个曲面。

  出示圆锥的透视图,让学生认识圆锥的高。

  ⑸在圆锥的实物模型中,相互说说圆锥的顶点、底面、侧面和高。

  三、巩固练习

  1、讨论“练一练”。

  交流挑选的理由和不挑选的理由。

  2、做练习五第2题。

  ⑴引导学生从正面、上面、侧面观察圆柱和圆锥,看分别看到的是什么形状?

  ⑵在书中连线。

  3、做练习五第3题。

  ⑴出示长方形、直角三角形和半圆形的小旗,引导学生猜想:如果将旗杆快速旋转,想想一下:小旗旋转一周各能成什么形状?让学生旋转小旗,看猜想是否正确。

  ⑵如果让你自己设计一个小旗,你想将小旗设计成什么样子的?想想一下,如果也这样旋转一周,会转成什么形状?自己做一做。

  通过本节课的学习,你学会了什么?

  完成《练习与测试》相关作业。

圆柱与圆锥课件 篇6

  教学目标

  1、使学生在观察、操作、交流等活动中感知并发现圆柱和圆锥的特征,知道圆柱和圆锥的底面、侧面和高。

  2、使学生在活动中进一步积累立体图形的学习经验,增强空间观念,发展数学思维。

  教学重点

  1、在充分感知的基础上,探索圆柱和圆锥的特征。

  2、进一步体验立体图形玉生活的联系,感受立体图形的学习价值,提高学习数学的兴趣和学好数学的信心。

  教学难点

  圆柱和圆锥的特征。

  教学方法

  分析中归纳解题方法

  教具

  多媒体课件

  教学过程与内容设计

  一、复习导入

  二、新授

  1、拿出圆柱和圆锥,说说它门的特点。

  2、你能找出生活中有哪些物体是圆柱和圆锥形的吗?

  3、现在我们首先来研究圆柱。

  (1)请以小组为单位,仔细观察桌上的圆柱,看看它有哪些特点。(提示:从面、棱、顶点和高这几方面来研究。)

  (2)请一位同学代表你们组来说说你们发现了什么?

  (3)老师现在有问题要问大家:圆柱上下两个圆有什么关系,怎样验证?

  (4)我们称这两个圆为圆柱的底面,也就是说圆柱有两个底面,一个侧面。

  (5)圆柱的高指什么?你有办法测量吗?说明圆柱有多少条高,长度有说明关系?

  (6)谁能完整的说一下圆柱的特征。

  1、教师提问:现在找找请你们带来的东西中,哪些是圆柱?请把圆柱举起来。

  2、举出学生带来的东西中不是圆柱的例子。

  3、揭示实物图,出现圆柱几何图形。

  教师说明:我们所学的圆柱都是直直的。,上下粗细相同的直圆柱,我们叫它圆柱。

  出示高、低不同的两个圆柱。

  用直尺和三角板演示圆柱的高。

  使学生明确:圆柱两个底面之间的距离叫做高。

  4、下面我们来认识另一个立体图形——圆锥。

  三、巩固练习

  四、全课总结。

  八、作业设计

  课本20页练习五4、

  欣赏一下生活中的圆柱和圆锥。

  九、板书设计

  圆柱和圆锥的认识

  圆柱的上、下两个面叫做底面、它们是两个完全相同的两个圆。

  圆柱的侧面,是一个曲面。

  圆锥,有一个顶点,底面是一个圆形,侧面一个曲面。

  教学反思

  本课时的内容较简单,但作为教师,我们并不能仅仅停留在教给学生有关圆柱和圆锥的特征这一层面上。研读教材,我发现教材力求体现让学生在主动探索的过程中感知圆柱和圆锥的特征,这与教师单纯地教给学生圆柱与圆锥的特征是有本质不同的。如果教师要教给学生这些知识的话,可能5分钟的时间就够了。但同样的,学生也可能很快就遗忘了。让我感到心有余而力不足的是,我很清楚自己在这节课中应该体现怎样的教学理念,应该怎样让学生主动参与新知识的学习,但实际操作时,却由于各种条件的限制没有很好地达成自己课前预设的教学效果。

圆柱与圆锥课件 篇7

  单元总目标:

  1、认识圆柱、圆锥的各部分的名称,掌握圆柱、圆锥的特征。

  2、理解圆柱的表面积、侧面积、体积的意义。会推导表面积、侧面积、体积的公式,认识进一法取近似值,能灵活解决实际问题。

  3、掌握圆锥体积公式的推导过程,能灵活解决实际问题。

  4、培养学生观察、比较、归纳的能力,以及空间观念。

  5、培养学生逻辑思考能力,有条理性的解决问题的能力。

  单元重点:圆柱体体积的计算

  单元难点:(1)圆柱体体积公式的推导过。

  (2)圆柱体侧面积、表面积的计算。

  (2)利用圆柱体、圆锥体等底等高条件下的关系解有关复杂应用题。

  突出重点、突破难点的关键:充分运用直观教具,进行割拼演示、实验,有目的、有步骤地引导学生观察、思考,推导出计算公式和有关概念。

  单元难点的剖析:(1)表现为:学生难于想到把一圆柱体的立体图形转化成什么图形来研究。怎样把它转化。

  原因:圆柱体和长方体在表面看来并没有什么联系。并且学生还很难由圆与圆柱的联系,而想到圆能转化成长方形来研究,圆柱就可以转化成长方体来研究。

  解决策略:首先回忆研究圆的面积计算时把圆转化成什么图形?如何剪拼成了这个学过的图形?借助多媒体课件把一个个完全一样的圆形堆成一个圆柱体,通过这个过程发展学生的空间想象力进行猜想:圆柱体能剪拼成什么图形,请学生试试看。

  (2)表现为:对圆柱体的侧面积公式容易获得,但学生对已知R或D求侧面积的问题,学生转不过,容易用底面积乘高来计算。而对表面积的计算,由于表面积公式中涉及的公式较多,学生往往不小心就弄混公式。

  (3)表现为:在具体的问题情境中会用错公式,如:求侧面积的求成了表面积,求体积的求成了表面积等。

  原因:学生可能对概念、公式记忆较熟,但在具体的问题环境下用错公式。主要还是学生对概念的感知不够。

  解决策略:(1)为新课教学做好准备,充分复习好圆的周长的计算方法、面积公式的推导过程。

  (2)借助实物多让学生感知概念的意义,不能死记硬背,要能用自己话说清楚。特别对中下生应多结合实物或图形指出问题要求的部分。

  (3)公式一定让学生动手操作参与到推导过程中,不能把公式直接交给学生。

  (4)学生自备圆柱体形状的物体,每节课的新课铺垫、例题教学、或是练习讲评都借助于具体的实物,让学生一边口述、一边指着实物来说,加强感知。

  单元策略:基于本单元是研究几何图形的有关知识,教学中主要采用学生动手操作、观察、实验等直观手段辅助教学。多让学生参与获得公式或经验。如:圆柱体展开图的特征、侧面积、表面积、体积及圆锥体的体积计算。

  错例的估计和采集:概念辨析题:(1)一只铁皮水桶能装水多少升是求水桶的()。(2)做一只圆柱体的油桶,至少用多少铁皮,是求油桶的()(3)做一节铁皮水管,要多少铁皮是求水管的()(4)给个圆柱体的花瓶包装在盒子里,需用多大的盒子是求花瓶的()

  分析及策略:这些属于概念不清的问题,因为这些知识点本身有联系又有区别,所以易混,因此教学中重点在新授中注意让学生多体验、多感受。还要在综合练习中加强对比,沟通它们的联系和区别。

  解决问题:(1)一个圆锥形的沙堆,底面直径是2米,高是0.5米,如果每立方米是800千克,这堆沙子一共多少千克?写出基本关系式再解答

  (2)有一个礼堂内有8根直径是50厘米、高5米的圆柱形的柱子,用了8千克的红色油漆粉刷,每平方米需用多少油漆?写出基本关系再解答

  分析及策略:此类型的错误主要是公式用错,原因还是对概念不清,解题思路不明,因此,教学中在保证理解概念的前提下多让学生讲思路、强调解答步骤的书写要有条理。

  有关圆柱体和圆锥体的混合题:(1)等底等高的圆柱体和圆锥体,圆锥体的体积是圆柱体的体积的(),圆柱体体积比圆锥体体积多(),圆锥体积比圆柱体少()。

  (2)一个圆柱体积是96立方厘米,与它等底等底高的圆锥体积是()立方厘米,圆锥体积比圆柱体积少()立方厘米。

  (3)一个圆锥和一个圆柱等底等高,它们体积之和是36立方分米,圆柱体积比圆锥大()立方分米。

  分析及策略:此类型题的错因主要是对圆锥体积公式的推导过程还只是一个圆锥体积公式的获得过程,是停在表面上的认识,并没有真正通过实验过程对两者在一定条件下的关系弄清楚。因此这个推导过程中应让学生把两种几何体的体积关系,能反说、正说、比多少等都能说清。

  练习题的分析:重点讲解的题目:39页第10题(重点说明生活中常说的圆柱体的长也就是数学意义上的圆柱体的高)。40页的13题(体积公式与比例知识的综合运用,即利用底面积一定时体积和高成正比例的关系来确定两个圆柱体体积的比,求出第二个圆柱体的体积,最后求出它们的差。)45页的第6题(关键是培养学生的实践能力,了解测量圆锥的高的方法。)、第8题(训练学生的解题思路,先算什么,再算什么。)、第11题(由圆锥的体积:等底等高的圆柱的体积=1:3,那么现在它们的比是1:6,底是相等的那说明圆柱的高是圆锥高的2倍,于是圆柱的高是9.6。实际上是圆锥与圆柱体积关系的灵活应用。)

  课时安排:1、圆柱的认识31页至33页及例1

  2、圆柱的表面积33页例2--例3

  3、圆柱的体积公式的推导36页例4及补充一道已知R求V的例题。

  4、认识圆柱的容积37页例5

  5、圆柱有关公式的对比练习39页8、9(增加不同位置类型的圆柱体)39页7、10

  6、圆锥的认识41页

  7、圆锥的体积公式的推导42页至43页例1

  8、圆锥体积的应用43页例2

圆柱与圆锥课件 篇8

  本单元内容是在学生已经探索并掌握长方形、正方形和圆等一些常见的平面图形的特征以及长方体、正方体的特征,并直观认识圆柱的基础上进行教学的。此前对圆面积公式的探索以及对长方体、正方体特征和表面积、体积计算方法的探索,既为进一步探索圆柱和圆锥的特征,探索圆柱表面积的计算方法以及圆柱和圆锥的体积公式奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。教学中我注意了以下几个方面:

  认识圆柱时,由于学生对圆柱已有了一些直观的认识,教学中我先让学生从情境图中找出圆柱,再让学生举例说说生活中还有哪些物体的形状是圆柱的。然后引导学生通过观察、比较与交流,进一步探索圆柱的特征。在此基础上,结合圆柱的直观图,介绍圆柱的底面、侧面和高的含义。这一过程,学生是在教师的引导下进行学习的,对圆柱的特征有了较完整的认识。

  二、注意学习方法的迁移和知识的对比,关注猜想和估计在探索学习中的作用

  圆锥的认识和圆柱的认识在研究内容上有其相似之处。认识圆柱后我及时地引导学生进行回顾:“圆柱有哪些特征?各部分的名称是什么?”通过交流学生明白了对于圆柱是从面、直观图等方面进行研究的。我及时设问:“我们能从哪些方面来研究圆锥?”通过交流,学生对学习的方法进行了有效地迁移,学习的积极性得到有效地激发。对于圆锥,不同的同学有了不同的认识。然后,通过适时地交流和组织阅读课本,学生对于圆锥有了较好的认识。在认识了圆柱和圆锥的特征以后,我让学生对它们的特征进行了有效的对比。从而使学生对于圆柱和圆锥有了更深的认识,完善了学生的知识系统。

  在探索圆柱的体积公式时,先让学生观察底面积和高分别相等的长方体、正方体和圆柱,猜想它们体积间的关系,再启发学生把以前探索圆面积公式的经验和方法迁移到探索圆柱的体积公式中来,进而推导出圆柱体积公式,验证猜想。

  三、从学生的生活实际出发,结合具体事物,利用学生已有的经验开展教学活动

  在教学圆柱的表面积的计算方法时,我先布置学生完成学具中等底等高的圆柱和圆锥的模型的制作,让学生对圆柱的表面积有个潜在的认识,并为教学体积公式奠定实物基础。教材先让学生围绕求圆柱形罐头侧面商标纸的面积是多少这一问题进行探索。在此基础上,我找来几个圆柱形并具有侧面商标纸的罐子,用剪刀剪开商标纸进行实物演示,再引导学生在方格纸上画出圆柱展开图,探索圆柱表面积的计算方法。学习圆锥的体积公式,重点是理解圆锥体积等于等底等高的圆柱体积的中的1/3“1/3”,学生没有动手操作,就没有亲身经历的体验,对1/3也就没有强烈的感受,所以我利用原有学生制作的模型,让学生在沙池中装、倒细沙,学生自己动手操作,亲身体验,推导出圆锥的体积公式,从而提升学生的数学思维水平,培养学生的学习能力。

  通过本单元的教学,我认识到在我们的教学中要注意教材编排的特点,有层次地发挥教师的主导作用。教学中的“度”确实应该引起我们的重视。

圆柱与圆锥课件 篇9

  教学目标:

  1、通过动手操作实验,推导出圆锥体体积的计算方法,并能运用公式计算圆锥体的体积。

  2、通过学生动脑、动手,培养学生的思维能力和空间想象能力。

  3、培养学生个人的自主学习能力和小组合作学习的能力。

  教具准备:

  1、等底等高的圆柱体和圆锥体6套,大小不同的圆柱体和圆锥体6套、水槽6套。

  2、一个圆柱的底面积是60平方分米,高15分米,它的体积是多少立方分米?

  3、圆锥有什么特征?

  学生回答后,教师用课件演示:屏摹上显示一个圆锥体,将它的底面、侧面、高和顶点闪烁。

  今天我们就利用这些知识探讨新的问题——怎样计算圆锥的体积(板书课题)

  教师:怎样探讨圆锥的体积计算公式呢?在回答这个问题之前,请同学们先想一想,我们是怎样知道圆柱体积公式的:

  学生回答,教师板书:

  教师:借鉴这种方法,为了我们研究圆锥体体积的方便,每个组都准备了一个圆柱体和一个圆锥体。你们小组比比看,这两个形体有什么相同的地方?学生操作比较。

  (1)提问学生:你发现到什么?(这个圆柱体和这个圆锥体的形状有什么关系)

  底面积相等,高也相等,用数学语言说就叫“等底等高”。

  (2)为什么?既然这两个形体是等底等高的,那么我们就跟求圆柱体体积一样,就用“底面积×高”来求圆锥体体积行不行?(不行,因为圆锥体的体积小)

  教师:(把圆锥体套在透明的圆柱体里)是啊,圆锥体的体积小,那你估计一下这两个形体的体积大小有什么样的倍数关系?(指名发言)

  的水和圆柱体、圆锥体做实验。怎样做这个实验由小组同学自己商量,但最后要向同学们汇报,你们组做实验的圆柱体和圆锥体在体积大小上有什么样的倍数关系。

  (3)学生分组做实验。

  谁来汇报一下,你们组是怎样做实验的?

  学生交流,教师板书公式:

  师:这里所说的底面积和高指的是谁的底面积和谁的高?

  四、尝试应用:

  1、课件出示引入题中的三堆沙子,同时添加数据:

  (1)底面积是10平方米,高是0.6米。

  (2)半径是2米,高是0.6米。

  (3)底面周长是12.56米,高是0.9米。

  通过计算你认为这三堆沙子够不够?

  2、从做实验所用的材料中任选一个圆锥,通过测量计算出它的体积是多少。

  3、

  (1)一个圆柱的体积是87立方米,与它等底等高的圆锥的体积是多少立方米?

  (2)一个高是30厘米的圆锥形玻璃杯装满水,现把杯中的水全部倒入一个和它等底等高的圆柱形水杯里,水在圆柱形水杯里的高度是多少厘米?

  (3)有一个圆柱形的木块,底面半径是1分米,高是3分米,把它削成一个最大的圆锥体,你知道圆锥的体积吗?去掉部分的体积呢?去掉部分的体积相当于圆柱体积的几分之几?

  五、推荐作业:

  墙角有一堆沙子,你能想办法求出这堆沙子的体积吗?

分享

热门关注

专用介绍信精品十三篇

专用介绍信

婚庆公司策划方案十五篇

婚庆公司策划方案

软件项目方案书九篇

软件项目方案

公司拿检讨书(分享12篇)

公司检讨书

作弊检讨书收藏八篇

作弊检讨书

圆柱和圆锥课件8篇

圆柱圆锥课件

最新圆锥侧课件

圆锥课件

圆柱体课件

圆柱体课件

圆锥的体积课件精选

圆锥体积课件

圆柱体积课件范本

圆柱体积课件