在大量的资料中留学群的编辑精选了一篇极其有用的“五年级数学教案”。每个老师不可缺少的课件是教案课件,需要大家认真编写每份教案课件。 良好的教案和课件能够促进教学内容的深入学习。下面仅供参考请自行决定是否适用!
五年级数学教案(篇1)
教学目标:
1、使学生掌握约分的方法,能正确进行约分;
2、使学生经历约分的探索过程,进一步发展数感,培养观察、比较、抽象、概括的能力;
3、使学生在自主探索、合作交流中,体验成功的愉悦,进一步树立学好数学的自信心。
教学重点:
掌握约分的方法。
教学难点:
很快看出分子、分母的最大公因数,能准确地判断约分的结果是不是最简分数。
教学过程:
一、创设情境,复习引入
1、指出下面每组数中的公约数(1除外)。
42和5015和58和2118和12
2、在括号里填上合适的数。
8/24=2/()=()/318/24=()/12=3/()
提问:你的依据是什么?(分数的性质)
3、揭示课题--约分。(板书课题:约分)
二、师生探究
1、教学约分的含义:例3。
(1)提问:你能写出和12/18相等,而分子、分母都比较小的分数吗?
(2)小组交流,说说:是怎样想的?
(3)汇报交流,得出两点:一是约分后得到的分数要与原来的分数相等;二是约分后得到的分数的分子、分母都要比原来的分数小。
(4)小结:把一个分数化成同它相等,但分子、分母都比较小的分数,就叫做约分。
2、介绍约分的方法和书写格式。
(1)分步约分及书写格式;
(2)一次约分及书写格式。
3、认识最简分数。
提问:可以直接把12/18化成最简单的分数吗?你是怎样想的?(找出12和18的最大公因数)
强调:2/3的分子和分母只有公因数1,这样的分数叫最简分数。约分时,通常要约成最简分数。
4、练一练。
第1题,指名学生口答,哪些分数是最简分数,并说说其余分数的分子、分母的公因数除了1还有几。
第2题,学生独立完成,可以用分步约分,也可以用一次约分的方法。集体订正时强调学生注意约分的书写格式是否规范、结果有没有约成最简分数。
三、巩固深化
1、做练习十一第4题。
提示学生联系2、5、3的倍数的特征依次观察每个分数的分子和分母,并口答。
2、做练习十一第5题。
学生独立完成,其中第4题可引导学生想一想26和39的因数,发现13是26和39的公因数,从而确定26/39不是最简分数。
3、做练习十一第6题。
学生独立完成,组织交流:可以先把上一行的分数分别约分,再与第2行的分数进行比较,学生根据交流情况各自订正。
四、全课总结
提问:今天这节课,学习了什么内容?通过学习,你有什么收获?还有什么疑问吗?
教学后记
五年级数学教案(篇2)
综合应用- 聪明的测量员 [教学内容]义务教育课程标准实验教科书青岛版小学数学五年级上册第54页 [教材简析]本节“聪明的测量员”是一节综合实践课,该实践活动是在学生学习了小数除法知识之后安排的,通过数学实践活动,让学生把在课堂上学到的数学知识应用到实际生活中去,使学生具有较大的自主发展的空间,激发学生的学习兴趣,培养学生自主地发现问题,自主地提出问题,自主地解决问题的能力,感受数学与生活的联系。 [教学目标] 1、在学习了小数除法知识基础上,探索生活中一些特殊物体的长度、质量、面积等的测量方法,加深对已学知识的理解和深化。 2、获得测量特殊物体的长度、质量、面积等的活动经验和具体方法,培养小组合作精神和问题解决能力。 3、感受数学知识之间的相互联系,体会数学与生活的密切联系,树立运用数学解决实际问题的自信。 [教学过程] (一)创设情境 提出问题 1、展示情景图中的特殊物体(字典、铜线圈、一堆花生米、一块蚊帐)。 2、你想知道这本字典一页纸的厚度、一根铜丝的直径、一粒花生米的质量和蚊帐上一个网眼的面积吗? 3、提出问题 (1)这些特殊物体的长度、质量、面积、直径能够直接测量出来吗? (2)怎样才能知道呢?现在就请你来做一个聪明的测量员。(出示课题) (二)、动手实践 探索方案 活动要求: 1、小组先估计物体的长度、质量、面积、直径,再讨论测量方案,最后动手操作。 2、活动过程中,小组成员要分工合作。 3、每项数据都要测量三次,然后取平均值。 4、把测量的结果填在表格中。 (三)、汇报交流 拓展延伸 1、汇报测量字典中一页纸的厚度的情况。 请小组成员汇报交流以下情况 (1)所测量的物体。 (2)具体测量方案。 (3)具体测量结果。 (4)在活动过程中,是否还有无法解决或者带有疑问的问题? 2、依次汇报测量一根铜丝的`直径、一粒花生米的质量、蚊帐上一个网眼的面积的情况。 3、其它组有没有不同的测量方法呢? 4、谁能总结一下测量这些特殊物体的长度、质量、面积、直径的方法。 (四)、总结回顾 评价反思 1、这次数学实践活动我们都测量了哪些物体的体积? 2、你都有哪些收获或体会? 3、如果你想继续探索,还有那些问题需要帮助解决? (五)、课后留疑 开拓视野 同学们,地球与月亮之间的距离很远,你知道它们之间的距离是怎样测量的吗?你想通过什么方式来了解呢? [ 课后反思] 这节课主要按照以下五个主要环节进行展开:创设情景 提出问题――动手实践 探索方案――汇报交流 拓展延伸――总结回顾 评价反思――课后留疑 开拓视野。在这里充分体现出在数学实践活动课中“问题”和“问题解决”的教学与设计理念。这节数学实践活动课是一个多向互动的过程。为学生提供合作交流、积极参与的宽松环境和机会;为每个学生提供了充足的用具,满足了每位学生实践操作的需求;同时也为学生创设一个便于交流的情境,鼓励学生积极表达自己的想法和接受他人的思想。改变了独生子女惟我独尊的性格,引导学生学会倾听别人、学会欣赏别人,关注学生互动交流、观点交锋及智慧的碰撞,为学生形成健康的合作意识打基础。 数学在这节活动课中只是作为一种计算的工具。这节实践活动课又是对小学数学知识进行的一次大胆创新和共同探究的新尝试。在探究的过程中一次又一次面临新的挑战、新的问题,提高了难度,扩散了学生的思维能力,培养学生的创新精神和实践能力。 本节课的数学实践活动,充分体现了学生动手实践、自主探索、合作交流的主要活动方式,改变了学生被动接受的学习方式,使主动探索、合作交流真正成为学生学习的主要方式。学生在活动中,不仅体会了数学就在身边,数学就在生活中,而且激发了学习的兴趣,获得了成功的体验,增进了学好数学的信心。在这样的数学实践活动课中,课堂变成了学生展示自我发展智慧的舞台,教师在学生活动过程中,是组织者、合作者和引导者,为学生营造了一个自主探索、自主创新的学习时空,达到了预期效果。
五年级数学教案(篇3)
一、教学内容
例1
理解众数的意义及特点。
能根据具体的问题,选择适当的统计量表示数据的不同特征。
例2
认识复式折线统计图,了解复式折线统计图的特点。
根据复式折线统计图回答简单的问题。
根据数据的变化进行数据分析和合理的推测。
二、教学目标
1.理解众数的含义,学会求一组数据的众数,理解众数在统计学上的意义。
2.根据数据的具体情况,选择适当的统计量表示数据的不同特征。
3.认识复式折线统计图,了解其特点,能根据需要,选择条形、折线统计图直观、有效地表示数据,并能对数据进行简单的分析和预测。
三、编排特点
1.在学生已有知识和经验的基础上,教学众数和复式折线统计图。
教材在编排本单元内容时,注意通过与先前统计知识的联系,帮助学生理解所学内容。如,众数的含义就是通过与平均数的对比来认识的,复式折线统计图也是由单式折线统计图引出的。这样既有助于加深对前面所学统计知识的理解,也便于对新知识的领悟。
2.提供丰富的生活素材,凸现统计的意义和价值。
本单元所选素材涉及到体育、气象、消费等方面,不仅扩大了学生处理信息的范围,
加强了与生活的联系,同时体会到统计知识的作用,明确学习目的。
四、具体编排
例1
编排思想:
创设舞蹈比赛选拔队员的情境,提出问题让学生思考。
呈现了不同的解决问题的方法。
通过全班的交流,教师进行总结,给出了明确的答案。
给出众数的概念,突出其特点。
教学建议:
引导学生分组讨论,从一组数据的极差和均匀程度分析怎么确定身高,再汇报交流。
给出众数概念后,注意让学生在分析比较中理解平均数、中位数和众数的联系和区别,进而理解为什么用众数来确定队员的身高,理解众数的统计意义。
做一做
编排思想:
呈现学生视力分布的数据,整理和描述后提出问题让学生思考。
体会中位数和众数的不同特点。
安排调查学生视力的实践活动。
通过生活中的数学体会平均数和众数的应用。
教学建议:
引导学生独立分析、汇报交流。
根据中位数和众数来分析学生视力的分布情况。
第3小题,可开放,学生能说出道理便可。
第5小题,要真正搞一次实践活动,进行数据分析。
练习二十四
第2题,虽然两名队员平均成绩一样,但是甲队员的成绩分布更稳定、均匀,更适合参加比赛。
第4题,通过整理数据让学生理解:在一组数据中,众数可能不只一个,也可能没有众数。
第5题,根据具体问题,选择适当的统计量表示数据的不同特征。
第6题,进一步感受众数在统计中的作用,体验统计在决策中的重要价值。
例2
编排思想:
利用复式统计表给出中国和韩国第9-14届亚运会获金牌情况,再用单式折线统计图分别进行描述,让学生比较两国金牌数量的变化情况。
发现这样比较不是很直观方便。
提出问题让学生思考。
明明给出提示。
让学生完成复式折线统计图。
聪聪提出问题,引导学生认识复式折线统计图的必要性和特点:便于比较两组数据的变化趋势和差异性。
提出4个问题让学生思考,进一步体会复式折线统计图的特点。
结合数据进行爱国主义教育。
教学建议:
引导学生根据统计表和统计图比较均可。
比较的问题可多样,如增减变化情况和相差情况等。
注意在已有知识的基础上学习:让学生回忆单式条形统计图合并成复式条形统计图的过程。
教师归纳画图的方法和规范性。
结合回答问题认识统计的意义。
做一做
编排思想:
通过回答问题,进一步认识复式折线统计图的特点:便于比较两种数据的变化趋势和差异性。
教学建议:
引导学生通过复式折线统计图,进一步学会分析数据,通过比较发现:两人成绩总体上都在上升,但是李欣是稳步上升,刘云则波动较大,不稳定。由此可预测比赛成绩李欣可能好于刘云。
练习二十五
第1题,通过分析数据得出:男生和女生都在增高,但13岁后女生趋缓。
第2题,进一步感受统计在生活中的作用,体验统计在决策中的重要价值。
第4、5题,面对不同的实际问题,选择合适的统计量,体验统计在决策中的重要价值。
五、教学建议
1.在已有知识的基础上教学。
教学本单元时,可充分利用学生已有的知识经验,通过与所学知识的对比,体会统计量的含义及统计图的特征和适用范围。如,教学复式折线统计图时,可先用单式折线统计图分别表示两组数据,让学生体会到,单式折线统计图可以清楚地反应出一组数据的增减变化,但在对两组数据进行比较时就不方便了,由此引出复式折线统计图。从而使学生深切体会到复式折线统计图的特点和优势,加深对折线统计图的认识。
2.注重对统计量的意义的理解,避免简单的统计量的计算。
教学中应避免单纯从计算的角度引导学生学习统计知识,应当注意对统计量意义的理解。如众数,不仅要让学生知道什么是众数,会求众数,更要注意结合具体数据理解众数的作用和特点。如教材第122页例1要解决挑选身高是多少的队员参赛比较合适?这一问题,实际上就是选用合适的统计量来描述15个候选队员的身高的集中情况,教材先让学生用平均数、中位数来描述,发现不能很好地反应身高的集中趋势,然后引出众数,由此体会众数的特点:在一组数据中,如果个别数据有很大的变动,且某个数据出现的次数最多,此时用该数据(即众数)表示这组数据的集中趋势就比较适合。教学时则可按此思路帮助学生理解众数的统计意义。
3.教学评价注重过程性评价。
让学生经历简单的收集、整理、描述和分析数据的过程是学习统计知识的首要目标。这就要求教师应创造尽可能多的机会让学生亲自从事简单的统计活动,如调查同学们的视力情况、所穿鞋子的号码、喜爱的电视节目等。教师要鼓励学生积极投入到各种活动中,留给他们足够的独立思考和自主探索的时间与空间,并在此基础上加强与同伴的合作与交流。从事统计活动的过程中教师应起到引领、指导的作用,例如,教师可以提出一些问题引发学生的讨论:你们准备如何收集数据;用什么方法展示数据;哪些数据经常出现;数据反映出什么趋势;从这些数据中能得到什么结论;从这些结论中能预测到什么等等。
4.适当把握平均数、中位数、众数的教学要求。
关于选择平均数、中位数、众数作为一组数据的代表问题,学生较难理解,有时没有唯一正确答案,只有合适与否的问题。因此要开放些。注重学生结合实际问题对这三个统计量的联系和区别的理解,淡化纯数值的计算。
综合应用打电话
*教学目标:
通过这个综合应用,让学生进一步体会数学与生活的密切联系以及优化思想在生活中的应用,培养学生应用数学知识解决实际问题的能力,同时通过画图的方式发现事物隐含的规律,培养学生归纳推理的思维能力。
*编排思想:
1.探索最优方案(每个人都不空闲)。
2.发现规律(第n分钟接到电话的人数是前n-1分钟接到电话的学生总数加1(老师),前n分钟接到电话的学生总数是2的n次方减1)。
3.应用规律。
*教学建议:
1.小组合作学习,教师指导,全班汇报交流。
2.提示学生利用画图表的直观形式解决问题。
3.数学模型是一种理想化的理论,要事先设计好具体通知方案(包括每人的通知对象)和流程图。
第七单元数学广角
一、教学内容
找次品
数学广角主要是向学生渗透一些重要的数学思想方法。优化是一种重要的数学思想方法,可有效地分析和解决问题。本单元主要以找次品这一操作活动为载体,让学生通过观察、猜测、试验等方式感受解决问题策略的多样性,在此基础上,通过归纳、推理的方法体会运用优化策略解决问题的有效性,感受数学的魅力。
二、教学目标
1.使学生通过观察、猜测、试验、推理等活动,体会解决问题策略的多样性及运用优化的方法解决问题的有效性。
2.让学生感受到数学在日常生活中的广泛应用,尝试用数学的发来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
三、编排特点
1.关注学生的生活经验,重视小组合作与交流。
根据学生的年龄特征,教科书在素材的选取上非常注重现实性,如钙片、矿泉水、松果、饼干、糖果、白糖等物品,都是学生身边常见的,既可激发学生学习的兴趣,又为教师组织教学提供了便利。
教科书的两个例题在编排上都呈现了小组合作学习的情景,要求学生通过小组活动探究解决问题的方法,在活动过程中逐步养成合作、交流的习惯。
2.注意体现思维过程和分析方法,培养学生解决问题的能力。
教科书在编排结构上注重体现数学知识的逻辑顺序,强调数学思维的一般过程,着力培养学生解决数学问题的意识和能力。如例1安排了从5个物品中找次品,仅要求学生说出找次品的方法,不需要进行规律总结,从而让学生感受解决问题策略的多样性;例2则安排了9个待测物品,并要求学生归纳出解决这类问题的最优策略,从而让学生经历由多样化过渡到优化的思维过程。
此外,教科书在分析方法的编排上还很重视数学化,即由具体到抽象,由特殊到一般的数学分析模式。先让学生探讨待测物品数量为5个、9个时怎样找次品,并罗列出各种解决方案;然后从这些方案中寻找规律,总结、提炼出一般方法和优化策略;最后,再利用归纳出的方法去解决待测物品数更多时的问题,同时也从可验证归纳出的方法是否正确。这里之所以需要验证,是因为本单元提供的归纳方法在本质上是一种不完全归纳法,对数量更大时的情形是否适用,还需要通过试验来检验。
四、具体编排
例1
编排思想:
*创设找5瓶钙片中的1瓶次品的合作学习的情境。
*认识找次品这类问题,探索解决问题的方法。
*体现解决问题方法的开放性、多样性。
教学建议:
*运用小组合作交流的学习方式。
*体现探索性和开放性,不必急于归纳最优方法,重在鼓励。
*如果没有天平,可利用卡片操作、画图表的形式进行分析。
*教师注意进行指导。
例2
编排思想:
*创设找若干零件中的1个次品的合作学习的情境。
*进一步认识找次品这类问题,探索解决问题的最优方法。
*体现解决问题方法的开放性、多样性、有效性。
教学建议:
*运用小组合作交流的学习方式。
*探索性最优化方法。
*如果没有天平,可利用卡片操作、画图表的形式进行分析,如画树图的方法。
*教师初步归纳最优方法。
*让学生继续探索10、11个零件找次品的方法。
*教师最后全面归纳最优方法。。
练习二十六
第1题,因总数为9筐,故可平均分成3份,只称2次就保证能把吃过的那筐松果找出来。如果天平两端各放4筐,如果这时天平恰好平衡,则剩下的那筐就是小松鼠吃过的,这样只称一次就找出了小松鼠吃过的那筐松果;但这种方法是不能保证一次就称出来的,也不能保证2次就能称出来,只能保证称3次就一定能称出来,故该方法不是最优的。
第2题,把15盒平均分成3份,至多3次就可以保证找出较轻的那盒饼干。
第4题是一个趣味题,问题的关键在于认识到爸爸与小明的年龄差是不会随时间变化而改变的,即现在和3年后两者的年龄差一样,所以设小明今年岁,则爸爸今年就是(+24)岁,从而+(+24)=34,可算出小明今年是5岁,爸爸今年是29岁。
第5题的编写意图在于让学生脱离具体的操作活动,学会用图示来分析和解决数学问题,从而培养学生的抽象思维能力。本题答案是至少需要称3次。
第6题与例题不同,是另一种类型的找次品,因为不知道次品比正品重还是轻,所以问题就复杂多了。对本题而言,还是分成3份,至多称2次就一定能找出次品。第一次天平两边各放一袋白糖,若天平平衡则剩下的那袋就是次品,再称一次就能判断次品是轻还是重了;若天平不平衡,则这两袋中一定有一袋是次品,可取下轻(或重)的那袋,把剩下的那袋放上天平,若天平平衡,则轻(重)的是次品,若天平不平衡,则重(轻)的是次品。
对学有余力的学生,可以此题为起点,探索数量为4,5......时如何找出次品。
第7*题是一道关于集合运算的题目。学生在三年级下册学过用集合圈来分析解决问题,所以本题可引导学生利用集合知识画出下面的图示:
再分析题意:两个组都没有参加的有6人,所以参加课外小组的一共有25-6=19人。这样,结合以前学的知识,就可算出集合圈中表示既参加音乐组又参加美术组的有12+10-19=3人。
关于你知道吗的说明
本专栏简要介绍了在已知次品比正品重或轻的情况下,保证能找出次品所需测的次数。由该表可发现,只要待测物品数量介于+1~之间,则最多只需要测次就保证能找出次品。由此,要保证6次能测出次品,待测物品可能是244~729个。
五、教学建议
1.加强学生的试验、操作活动。
本单元内容的活动性和操作性比较强,大都可以采取学生动手实践、小组讨论、探究的方式教学。实际教学时,可先多给学生一些时间,让他们充分地操作、试验、讨论、研究,找到解决问题的多种策略。在活动中出现的一些共性的问题,教师可集中解决,如有的学生在称的次数少于至少能保证找出次品的次数时,就找出了次品,这时教师应提醒学生把所有的可能性都考虑进去。活动完成后,教师可要求学生分组汇报结果,并在黑板或屏幕上一一展示,让学生感受到同一问题却有多种解决方案,同时也为后面寻求最优的解决策略打下了研究、分析的基础。
2.重视培养学生的猜测、推理能力和探索精神。
组织学生进行试验操作活动,仅仅是本单元教学内容的基础或前奏,教学的重点在于活动后的猜测、归纳、推理过程,由此促进学生养成勤于思考,勇于探索的精神。操作活动时,学生往往会得出多种解题策略,教学时,教师应引导学生从这些纷繁复杂的方法中,从简化解题过程的角度,找出最优的解决策略。实际教学时,教师可先让学生观察各种解决策略,引导学生发现把待测物品分成3份称的方法最好,在此基础上,就可让学生进行猜测:这种方法在待测物品的数量更大时是否也成立呢?从而可引发学生进一步进行归纳、推理等数学思考活动。这时,教师可引导学生逐步脱离具体是实物操作,转而采用列表、画图等方式进行较为抽象的分析,实现从具体到抽象的过渡。
五年级数学教案(篇4)
教学要求:认识循环小数的特点,理解循环小数的意义,了解循环小数的简便计法。
认识循环小数的特点,理解循环小数的意义,了解循环小数的简便计法。
三、呈现自学指导(1):
1、认真看课本27页,观察400÷75的竖式计算,说说你的发现。
2、思考:这个竖式如果继续除下去,会是怎样的情况。你怎样表示出它们的商?
五分钟后,比一比看谁能做出类似的题目,并能说出自己的发现。
1、学生看书,教师巡视,注意帮助学困生。
28÷18=78.6÷11=
5.7÷9=20÷3.7=
(2)请四名同学板演,其他同学自己做,做好后与板演的同学对比,找出不同。
1.55…5.314162…
1.53533530.19292…
1.5353…0.6333…
5.405405…1.2108108…
六、出示自学指导(2):
认真看课本28页的“你知道吗?”
思考:
1、循环小数中,依次不断重复出现的数字叫什么?
2、数字上面的小圆点叫什么?
3、像5.3…可以简写成多少?
4、7.14545…也可以简写成多少?
1、学生看书,教师督促学生专心看书。
2、了解学习情况。
3、出示检测题:
用循环节表示出下列循环小数:
1.55…=0.19292…=
1.5353…=0.6333…=
5.405405…=1.2108108…=
指名板演,其他同学仔细观察,为评价作好准备。
看写得是否准确规范,学生评,师生评。
计算下面各题,除不尽的用循环小数的简写表示商,再保留两位小数写出它们的近似值。
2、选做题:
循环小数0.48536536……的小数部分第60位上的数是几?第100位上的数呢?
五年级数学教案(篇5)
设计说明
本节课是在学生已有知识经验的基础上,让学生进一步体会数据的整理、描述和分析的过程,认识复式折线统计图。
1.注重情境创设,产生认知冲突。
本节课结合学生学过的复式条形统计图和单式折线统计图进行教学。新课伊始,提出问题:如果要在一个统计图上表示出4月7~10日我国南北两地最高气温的变化情况,制作什么统计图比较合适呢?然后引出要学习的内容:复式折线统计图。
2.重视自主探究,培养学生的动手操作能力。
动手操作是学生获取知识的一种有效手段,也是《数学课程标准》中提倡的学习方式。本节课通过教师引导,并结合上节课的已有经验,让学生自己动手绘制复式折线统计图,感知复式折线统计图的特点,体会复式折线统计图的作用。
课前准备
教师准备PPT课件
学生准备直尺
教学过程
第1课时复式折线统计图(1)
⊙创设情境,导入新课
1.你知道中国最南和最北的位置吗?你知道两地的天气情况吗?
(学生结合课前收集的资料,自由交流)
2.你还记得折线统计图吗?折线统计图有什么特点?
3.以表格形式出示4月7~10日我国南北两地最高气温的变化情况。
提问:如果要在一个统计图上表示出4月7~10日我国南北两地最高气温的变化情况,制作什么统计图比较合适呢?这节课我们就一起来探究复式折线统计图。(板书课题)
设计意图:通过回顾旧知检验已学知识,为学习复式折线统计图奠定基础。
⊙探究新知
1.认识复式折线统计图。
(1)猜想复式折线统计图:请大家迁移复式条形统计图的知识想一想,复式折线统计图有哪些特点呢?(学生自由交流)
(2)读懂复式折线统计图。
(课件出示教材84页4月7日~10日我国南北两地最高气温的复式折线统计图)
①观察、汇报复式折线统计图的组成。
②讨论怎样读复式折线统计图。
小组讨论,得出:读复式折线统计图的方法与读复式条形统计图的方法相同,可以横向观察、纵向观察、对比观察等。
③观察复式折线统计图,获取信息。
(用自己喜欢的方式观察复式折线统计图,并说一说获取了哪些信息)
设计意图:通过观察、讨论,用知识迁移法来学习新知,使学生了解复式折线统计图,同时加深对前面所学统计知识的理解,从而可以更好地掌握复式折线统计图。
2.探究复式折线统计图的特点。
(1)课件出示课前制作的曾母暗沙和漠河县两地xxxx年4月7~10日最高气温的单式折线统计图,引导学生对比单式和复式折线统计图,找出两者之间的异同,填写下表。
相同点
不同点
单式折线
统计图
(1)有标题、横轴、纵轴、单位名称。
(2)确定每一格代表多少单位。
(3)先描点,再连线,连线要用直尺。
只有一条折线。
复式折线
统计图
(1)有两条折线。
(2)有图例。
(2)小组合作探究复式折线统计图的特点。
通过对比,你发现复式折线统计图有哪些优势?
预设
复式折线统计图不但能表示出两组数据数量的多少、数量增减变化的情况,而且还可以比较两组数据的变化趋势。
3.读统计图,解决问题。
(1)两地哪天的最高气温相差最大?相差多少?
(2)两地最高气温相差25℃的是哪天?
(3)曾母暗沙的最高气温是如何变化的?漠河呢?
(4)从总体上看,两地这几天的最高气温之间最明显的差别是什么?
(学生独立完成后交流汇报)
设计意图:通过自主探究、合作交流的学习方式,引导学生通过对比单式和复式折线统计图,进一步认识、读懂复式折线统计图,并能够从图中发现问题、提出问题、解决问题,培养学生的应用意识。加深对复式折线统计图的理解。
五年级数学教案(篇6)
教学目标:
1、知识与技能:使学生理解并掌握质数、合数的概念,并能进行正确的判断。
2、过程与方法:采用探究式学习法,通过操作、观察自主学习、提出猜想、合作、交流验证、分类、比较、抽象、归纳总结、巩固提高学习过程,培养学生动手操作、观察和概括能力,培养学生积极探究的意识。
3、情感态度与价值观:在体验与探究的活动中,让学生体验数学活动充满着探索与创新,感受数学文化的魅力,培养学生勇于探索的科学精神。
教学重点:
理解质数和合数的意义
教学难点:
判断一个数是质数还是合数的方法,明确自然数按因数的个数可分为三类
教具学具准备:
学生每人准备一张学号牌、课件
教学过程:
(一)创设情境,激趣导入
1、介绍学号数字9和12,引出整数的第一次分类:偶数、奇数。
2、学生介绍数字时出现质数,教师借机引入本节课学习内容:质数和合数。
3、学生汇报预习结果,同时提出学习目标。
(二)主动参与,探索新知
1.课前预习。每个同学都有自己的学号,课前大家已经在自己的学号牌上写出1—20的所有因数。(课前完成)
2、交流:课件出示1—12所有的因数,现在请所有同学一起来观察屏幕,看看你把1—12依据什么标准进行分类的?你又是如何理解质数与合数的?课前大家在预习的时候已经有了自己的想法,现在在组内互相说一说。(交流、汇报)
【设计意图:根据给定的.标准观察、分析,突出了有关概念的本质特征,又能使学生体会到分类标准的合理性。通过对“1”的研究,完善对非0自然数的认识,促进学生对质数和合数概念的理解。】
3、教师提问:我们班有29个人,谁的学号是质数?谁的学号是合数?1号同学呢?引出整数的第二次分类(板书)
4、判断下面各数,哪些是质数,哪些是合数。
17 22 29 35 37 87
学生先自己想一想,然后分组讨论,汇报交流。
【设计意图:课堂上充分发挥学生的主体作用,营造独立思考的时间和空间,使他们积极参与课堂讨论,促进学生的自主学习和探究。】
(三)动手实践,制作100以内的质数表。
1、51是质数还是合数?要想马上知道一个数是什么数还真不容易。(过渡)如果有质数表可查就方便了。我们一起制作一个质数表,拿出100以内的数表,想想怎样找出100以内的质数,制成质数表。
2、刚才,我们有些同学接受任务后,有的马上就去找,有人在思考。要是我,我可不及于去找,而是想一想用什么方法去找。说说你们是怎样找的?
(把质数留下,其他的数去掉,古代数学家就是用这种筛选的方法制作质数表的。我们都来筛吧!)
3、怎样筛选的更快?……同学们自己发现了规律制成了100以内的质数表。你们真了不起!
【设计意图:通过教师的引导,学生自主建构知识,完成100以内的质数表,使学生形成一个知识网络,进一步发展了学生的数感。】
(四)巩固练习,拓展延伸
1、你能写成几个质数相乘的形式吗?
6= 、、、 28 = 、、、、
2、判断下面这段话中的数字是质数还是合数。
2月8日,13名河北唐山农民自费来到遭受最严重冰雪灾害的湖南郴州抗冰救灾,他们每天凌晨5点准时起床,忙到晚上12时才能休息,每天工作近20小时,16天时间他们帮助灾区重建了10座电塔。
3、猜一猜:小红家的电话号码是多少?
最小的合数,它的因数只有1和3,既不是合数也不是质数,10以内最大的偶数它的最大的因数是8,10以内3的倍数同时又是偶数,10以内最大的合数
【设计意图:通过设计一组有层次的练习,既巩固了新知,又联系了以前的知识。通过交流,充分展示学生的思维,强化探究学习的效果,取长补短,达到共同进步。】
4、课堂反馈:
(五)归纳总结,师生评价
1、总结:本节课学习了什么?你有什么收获?还有什么疑问?
2、回到课始情境,你能打开密码锁了吗?里面是什么?屏显示:“快乐学习,快乐成长”八个大字。
3、师:这就是老师送给你们的礼物。你们快乐吗?说说感受。
【设计意图:通过总结与反思,及时反馈,学生内化知识。通过评价,使学生体验成功,树立学好数学的信心。】
五年级数学教案(篇7)
教学内容:
义务教育课程标准实验教科书《数学》(新世纪版)五年级下册第六单元第82-83页《包装的学问》。
教材分析:
本课教学内容是在学生掌握了长方体特征及表面积计算等相关知识的基础上,进一步探究几个相同长方体组合成新长方体的多种方案以及使其表面积最小的最优策略。教材把《数学与购物》这一系列数学实践活动安排在第六单元后,主要意图是通过这样一系列与生活紧密联系的实践活动,培养学生综合应用所学的知识解决实际问题的能力。在这一系列实践活动中,教材安排了三个内容,主要涉及数与代数、空间与几何两部分知识,在解决生活实际问题的过程中,分别培养了学生的估算意识、计算中的最优策略以及多个长方体叠放后使其表面积最小的最优策略。本课教学内容是这一系列实践活动中的最后一个内容。
包装问题在日常生活与生产中经常遇到,教材创设包装的情境,使学生综合应用表面积等知识来讨论如何节约包装纸的问题,它不仅培养学生的节约意识,更体现了数学的优化思想。有助于培养学生空间观念,提高解决实际问题的能力,感受数学与实际生活的密切联系。同时有利于学生感悟数学思想,积累数学活动经验。
学情分析:
1、学生已有的知识基础。
在本课学习之前,学生已熟练掌握了长方体、正方体的特征,能准确、迅速地计算出单一物体的棱长、表面积、体积,能把几个相同的正方体组合成新的正方体。初步接触了由两个相同的正方体拼成一个长方体后表面积发生的变化。在第二单元探索活动《露在外面的面》中,又训练了学生有序的观察能力和计算露在外面的面 面积的能力。
2、学生已有的生活经验。
学生大都接触过物品的包装,能清楚地意识到用包装纸包装起来的部分就是求物体的表面积。
3、学生学习本课内容可能遇到的困难及学习方式的研究。
学生在探究由四个或者多个相同的长方体组合成新的长方体时,对于方案的多样化与策略的最优化可能存在问题,通过动手操作大多数学生可以得到由4个相同长方体组合成新的长方体时的六种拼摆方案,但思维可能会无序,对于方法的归纳和总结也存在困难。因此以小组合作的活动方式可以说是本课的较佳路径,让同伴之间相互协作,共同归纳总结,有助于培养学生思维的有序性。