高二数学教学计划模板1500字合集

2022-12-23 10:47:17 高二数学教学计划

  光阴飞逝,我们又将迎来新的一学期,新学期的教师教学计划需要制定了,教学计划是开展正常教学的准备工作,究竟怎么才能写好一篇教学计划呢?根据你的需要,留学群的编辑精心整理了高二数学教学计划模板,欢迎阅读,希望你能喜欢!

高二数学教学计划模板【篇1】

  一、教材分析

  1.教材所处的地位和作用

  在学习了随机事件、频率、概率的意义和性质及用概率解决实际问题和古典概型的概念后,进一步体会用频率估计概率思想。它是对古典概型问题的一种模拟,也是对古典概型知识的深化,同时它也是为了更广泛、高效地解决一些实际问题、体现信息技术的优越性而新增的内容。

  2.教学的重点和难点

  重点:正确理解随机数的概念,并能应用计算器或计算机产生随机数。

  难点:建立概率模型,应用计算器或计算机来模拟试验的方法近似计算概率,解决一些较简单的现实问题。

  二、教学目标分析

  1、知识与技能 :

  (1)了解随机数的概念;

  (2)利用计算机产生随机数,并能直接统计出频数与频率。

  2、过程与方法:

  (1)通过对现实生活中具体的概率问题的探究,感知应用数学解决问题的方法,体会数学知识与现实世界的联系,培养逻辑推理能力;

  (2)通过模拟试验,感知应用数字解决问题的方法,自觉养成动手、动脑的良好习惯

  3、情感态度与价值观:

  通过数学与探究活动,体会理论来源于实践并应用于实践的辩证唯物主义观点.

  三、教学方法与手段分析

  1、教学方法:本节课我主要采用启发探究式的教学模式。

  2、教学手段:利用多媒体技术优化课堂教学

  四、教学过程分析

  布置练习:

  课本练习 3、4

  「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。

  五、板书设计

  3.2.2(整数值)随机数的产生

  问题解答: 课堂检测:

高二数学教学计划模板【篇2】

  课后作业是课堂教学的反馈,作业质量的高低,一定层面可以反映教学效果的高低,因此,作业的布置需要科学化,分层化,多样化,且知识点具有全面性。

  3.做好课后辅导工作。

  ①利用晚自习,充分给以每个学生耐心、细心、全面的辅导。让学生积累的问题得到彻底解决。

  ②利用自习课时间,寻找需要帮助的学生进行辅导,公式背不出来的,抓背公式,不交作业的,责令补交作业。

  4.做好作业、考试反馈工作。

  学生认真完成作业和考卷,老师进行批改,总结共性问题,发现个性问题,有针对性的给以反馈,及时消除困惑。

  5.规范作答,养成良好习惯。

  现在学生的数学答卷,条理不清晰,逻辑混乱,因果颠倒,这是基础不扎实的表现,更是一种思维的缺陷。因此,现阶段抓好规范答题,有助于学生良好数学思维的养成,避免将来高考失分和日后生活的凌乱。

  6.培养学生的数学兴趣,普及数学价值规律的应用。

  兴趣是的老师。数学难,数学烦,难在何处,烦在何方?找到原因,对症下药,通过课堂,移植中外数学趣味知识,让学生体会到数学的价值所在,通过多媒体,降低数学思维难度等等都是提高学生兴趣的好方法。

  以上是这个学期的教学工作计划,在实施过程中,将及时作出调整,以期达到教与学的效果。

高二数学教学计划模板【篇3】

  教学目标:

  1、知识与技能

  (1)了解算法的含义,体会算法的思想;

  (2)能够用自然语言叙述算法;

  (3)掌握正确的算法应满足的要求;

  (4)会写出解线性方程(组)的算法;

  (5)会写出一个求有限整数序列中的最大值的算法.

  2、过程与方法

  (1)通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法;

  (2)同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法.

  3、情感与价值观

  通过本节的学习,对计算机的算法语言有一个基本的了解;明确算法的要求,认识到计算机是人类征服自然的一个有力工具,进一步提高探索、认识世界的能力.

  教学重点、难点:

  重点:算法的含义,解二元一次方程组、判断一个数为质数和利用“二分法”求方程近似解的算法设计.

  难点:把自然语言转化为算法语言.

  教学过程:

  (一)创设情景、导入课题

  问题1:把大象放入冰箱分几步?

  第一步:把冰箱门打开;

  第二步:把大象放进冰箱;

  第三步:把冰箱门关上.

  问题2:指出在家中烧开水的过程分几步?(略)

  问题3:如何求一元二次方程 的解?

  第一步:计算 ;

  第二步:如果 ,

  如果 ,方程无解

  第三步:下结论.输出方程的根或无解的信息.

  注意:在以上三个问题的求解过程中,老师要紧扣算法定义,带领学生总结,反复强调,使学生体会以下几点:

  ①有穷性:步骤是有限的,它应在有限步操作之后停止,而不能是无限地执行下去。

  ②确定性:每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可的。

  ③逻辑性:从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。

  ④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法。

  ⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。

  注:其他还有输入性、输出性等特征,结论不固定.

  提问:算法是如何定义?

  (二)师生互动、讲解新课

  x-2y=-1 ①

  回顾(课本P2内容): 写出解二元一次方程组 2x y=1 ② 的算法.

  解:第一步,②×2 ①,得5x=1;③

  第二步,解③,得x= ;

  第三步,②-①×2得5y=3;④

  第四步,解④ ,得y= ;

  第五步,得到方程组的解为 x= ;y= 。

  思考1:你能写出求解一般的二元一次方程组的步骤吗?

  上题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法

  对于一般的二元一次方程组 可以写出类似的求解步骤:

  第一步,①×b2-②×b1,得 ;③

  第二步,解③,得 .

  第三步,②×a1-①×a2,得 ;④

  第四步,解④,得 ;

  第五步,得到方程组的解为

  (高斯消去法)

  思考2:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个“算法”.我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组.那么解二元一次方程组的算法包括哪些内容?

  思考3:一般地,算法是由按照一定规则解决某一类问题的基本步骤组成的.

  你认为:

  (1)这些步骤的个数是有限的还是无限的?

  (2)每个步骤是否有明确的计算任务?

  总结:在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法.

  算法(algorithm)一词出现于12世纪,源于算术(algorism),即算术方法.指的是用阿拉伯数字进行算术运算的过程.在数学中,算法通常是指按照一定的规则解决某一类问题的明确的和有限的步骤.现在,算法通常可以编成计算机程序,让计算机执行并解决问题.后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法.

  广义地说,算法就是做某一件事的步骤或程序.菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算

  法,歌谱是一首歌曲的算法.在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序.比如解方程的算法、函数求值的算法、作图的算法,等等.

  (三)例题剖析,巩固提高

  例1(课本P3例1):如果让计算机判断7是否为质数,如何设计算法步骤?

  算法:

  第一步,用2除7,得到余数1,所以2不能整除7.

  第二步,用3除7,得到余数1,所以3不能整除7.

  第三步,用4除7,得到余数3,所以4不能整除7.

  第四步,用5除7,得到余数2,所以5不能整除7.

  第五步,用6除7,得到余数1,所以6不能整除7.

  因此,7是质数.

  课堂练习1:

  整数89是否为质数?如果让计算机判断89是否为质数,按照上述算法需要设计多少个步骤?

  思考4:用2~88逐一去除89求余数,需要87个步骤,这些步骤基本是重复操作,我们可以按下面的思路改进这个算法,减少算法的步骤.

  (1)用i表示2~88中的任意一个整数,并从2开始取数;

  (2)用i除89,得到余数r. 若r=0,则89不是质数;若r≠0,将i用i 1替代,再执行同样的操作;

  (3)这个操作一直进行到i取88为止.

  你能按照这个思路,设计一个“判断89是否为质数”的算法步骤吗?

  算法设计:

  第一步,令i=2;

  第二步,用i除89,得到余数r;

  第三步,若r=0,则89不是质数,结束算法;若r≠0,将i用i 1替代;

  第四步,判断“i>88”是否成立?若是,则89是质

  数,结束算法;否则,返回第二步.

  探究:一般地,判断一个大于2的整数是否为质数的算法步骤如何设计?

  在中央电视台幸运52节目中,有一个猜商品价格的环节,竟猜者如在规定的时间内大体猜出某种商品的价格,就可获得该件商品.现有一商品,价格在0~8000元之间,采取怎样的策略才能在较短的时间内说出比较接近的答案呢?

  例2、一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少只小兔多少只鸡?

  算法1:S1 首先计算没有小兔时,小鸡的数为:17只,腿的总数为34条。

  S2 再确定每多一只小兔、减少一只小鸡增加的腿数2条。

  S3 再根据缺的腿的条数确定小兔的数量: (48-34)/2=7只

  S4 最后确定小鸡的数量:17-7=10只.

  算法2:S1 首先设 只小鸡, 只小兔。

  S2 再列方程组为:

  S3 解方程组得:

  S4 指出小鸡10只,小兔7只。

  算法3:S1 首先设 只小鸡,则有 只小兔

  S2 列方程

  S3 解方程得 ,则

  S4 指出小鸡10只,小兔7只.

  算法4:S1 “请一名驯兽师”所有小鸡抬一条腿,所有小兔抬两条腿

  S2 有小兔 只

  S3 有小鸡 只

  S4 指出小鸡10只,小兔7只.

  算法5:S1 有小兔 只

  S2 有小鸡 只

  二分法:

  对于区间[a,b ]上连续不断,且f(a)f(b)

  例3(课本P4例2):写

  出用“二分法”求方程 的近似解的算法.

  算法分析:

  令f(x)= ,则方程 的'解就是函数f(x)的零点.

  第一步,令f(x)= ,给定精确度d.

  第二步,确定区间[a,b],满足f(a)·f(b)

  第三步,取区间中点 .

  第四步,若f(a)·f(m)

  将新得到的含零点的区间仍记为[a,b];

  第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步.

  (四)课堂小结,巩固反思

  1、算法的主要特点:

  (1)有限性:一个算法在执行有限步后必须结束;

  (2)确切性:算法的每一个步骤和次序必须是确定的;

  (3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件.所谓0个输入是指算法本身定出了初始条件.

  (4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果.没有输出的算法是毫无意义的.

  2、计算机解决任何问题都要依赖算法,算法是建立在解法基础上的操作过程,算法不一定要有运算结果.设计一个解决某类问题的算法的核心内容是将解决问题的过程分解为若干个明确的步骤,即算法,它没有一个固定的模式,但有以下几个基本要求:

  (1)符合运算规则,计算机能操作;

  (2)每个步骤都有一个明确的计算任务;

  (3)对重复操作步骤作返回处理;

  (4)步骤个数尽可能少;

  (5)每个步骤的语言描述要准确、简明.

高二数学教学计划模板【篇4】

  1。解析几何是利用代数方法来研究几何图形性质的一门学科,它包括平面解析几何和空间解析几何两部分。它的主要研究对象是直线和平面、二次曲线和二次曲面。在大学阶段,“解析几何”是以圆锥曲线和圆锥曲面为研究对象的一门学科,研究三元二次方程表示的曲线和曲面,如空间直线、平面、柱面、锥面、旋转曲面和二次曲面的方程等,研究的内容比较固定,研究方法比较成熟。高中阶段主要研究二元二次方程所表示的曲线,比如圆、椭圆、双曲线、抛物线等。

  2。“解析几何思想”代表了研究曲线和曲面的一般方法和手段,即用代数为工具解决几何问题。用解析几何的思想方法来研究几何问题,思维工程可以表现为以下步骤:第一,用代数的语言来描述几何图形,例如“点”可以用“数对”表示,“曲线”可以用“方程”表示等;第二,把几何问题转化为代数问题,例如,“两直线平行”可以转化为“两直线方程组成的方程组无解”等;第三,实施代数运算,求解代数问题;第四,将代数解转化为几何结论。随着数学本身的发展,出现了代数数论、代数几何等的数学分支,而拓扑学、泛函等代数工具都可以作为研究心得曲线和曲面的工具,这些都是“解析几何思想”的发展个推广。解析几何初步的重点是帮助学生理解解析几何的基本思想,即把代数作为一种工具和手段来研究几何问题。

  3。“坐标系”是解析几何思想的主要组成部分,因为建立了坐标系,就能把曲线和曲面的性质用代数来表示,从而把几何问题转化为代数问题来解决。适当地选择坐标系可以大大简化对图形性质的研究,但图形的性质不会竖着坐标系的变化而改变。我们要研究的正是那些和坐标系的选择无关的性质;或者说建立坐标系正是为了摆脱图形对坐标系的依赖,这在对数上就表现为某个线性变换群下的不变量和不变关系。

  4。圆锥曲线是我们生活中最基本的图形。①圆锥曲线(面)可以帮助我们刻画一些基本的运动。例如,太阳系中,八大行星的运动轨迹都是椭圆。②光学性质和圆锥曲线是密不可分的,基本的光学性质都是由圆锥曲线体现出来的。例如,探照灯就是利用抛物面的光学性质制作而成的,它可以将点光源发出的光折射成平行光,照射到足够远的地方。几乎所有的光学仪器都是依照圆锥曲线(面)的性质制成的。③研究圆锥曲线(面)的性质时体现解析几何本质的最好载体,即便是在大学数学系的学习中,如何利用方程的系数确定二次曲线的形状,揭示其规律也是数学的经典内容。

高二数学教学计划模板【篇5】

  一.指导思想

  根据湖北省的新课改教学实施指导意见,结合我们学校的实际教学情况,发挥备课组的集体力量,全力以赴的完成本学期的教学任务。同时加强对新课改理念的学习,相互协作,积极面对新课改的要求。

  二.工作重点

  认真落实组里每位老师的课堂常规教学任务,努力加强老师的课外教学科研工作;积极学习新课改的理论知识,认真研究新教材的教法,做一个教学科研全方位的教师;同时发挥备课组全体成员的集体力量,积极研讨新教材的教学内容,全力提升高二年级的数学水平,缩小和其它学校的差距。

  三.具体措施

  (1)落实好组里每位老师的两节公开课的任务,按照先议教案,再听课堂,最后评价的程序严格落实到位。

  (2)充分利用每个星期二下午的集体备课时间,商讨教学中存在的问题,探究新教材的教法。同时争取机会出去学习教改名校的数学学科课改教学的经验。

  (3)做好每一次阶段性的考试工作,考前认真准备,阅卷客观公正,客观评价教学质量。

  (4)分班落实数学学科的培优补差工作,尤其是文科班数学的提升。

  (5)准备参加5月份的全国高中数学联赛的活动,积极安排年轻老师参加数学教学竞赛工作。

  四.教学进度

  (1)2,3月份,文科完成选修1-1和选修3-1,理科完成选修2-1和3-1的教学任务,建议把选修3-1的《数学史选讲》参插讲。

  (2)4月份,理科完成选修2-2,文科完成选修4-5

  (3)5月份,理科完成选修4-1,文科完成选修4-5。

  (4)6月份,理科完成选修4-4,文科开始期末考试的复习。

  说明:根据xx省新课程教学实施指导意见,本学期理科完成选修2-1和2-2的内容,文科完成选修1-2和1-1的教学内容,但是我们还是打算把选修3-1,4-5的内容都上完,为高三复习做好准备,从时间上看,文科的教学时间是充足的,但是理科的教学时间比较紧,希望各位老师合理安排好教学时间,确实落实好每章每节的教学任务。

高二数学教学计划模板【篇6】

  【课程分析】:

  在前面的两节里,我们已经学习了一些简单的算法,对算法已经有了一个初步的了解。这节课的内容是继续加深对算法的认识,体会算法的思想。这节课所学习的辗转相除法与更相减损术是第三节我们所要学习的四种算法案例里的第一种。学生们通过本节课对中国古代数学中的算法案例——辗转相除法与更相减损术学习,体会中国古代数学对世界数学发展的贡献。教学重点是理解辗转相除法与更相减损术求最大公约数的方法。难点是把辗转相除法与更相减损术的方法转换成程序框图与程序语言。

  【学情分析】:

  在理解最大公约数的基础上去发现辗转相除法与更相减损术中的数学规律,并能模仿已经学过的程序框图与算法语句设计出辗转相除法与更相减损术的程序框图与算法程序。

  【设计思路】

  采用启发式,并遵循循序渐进的教学原则。这有利于学生掌握从现象到本质,从已知到未知逐步形成念的学习方法,有利于发展学生抽象思维能力和逻辑推理能力。

  【学习目标】

  (1)理解辗转相除法与更相减损术中蕴含的数学原理,并能根据这些原理进行算法分析。

  (2)基本能根据算法语句与程序框图的知识设计完整的程序框图并写出算法程序。

  (3)领会数学算法与计算机处理的结合方式,初步掌握把数学算法转化成计算机语言的一般步骤。

  【教学流程】

  一、创设情景,揭示课题

  1、教师首先提出问题:在初中,我们已经学过求最大公约数的知识,你能求出18与30的公约数吗?

  2、接着教师进一步提出问题,我们都是利用找公约数的方法来求最大公约数,如果公约数比较大而且根据我们的观察又不能得到一些公约数,我们又应该怎样求它们的最大公约数?比如求8251与6105的最大公约数?这就是我们这一堂课所要探讨的内容。

  二、研探新知,发现规律

  1、辗转相除法

  例1求两个正数8251和6105的最大公约数。

  解:8251=6105×1+2146

  显然8251的最大公约数也必是2146的约数,同样6105与2146的公约数也必是8251的约数,所以8251与6105的最大公约数也是6105与2146的最大公约数。

  6105=2146×2+1813 2146=1813×1+333

  1813=333×5+148 333=148×2+37

  148=37×4+0

  则37为8251与6105的"最大公约数。

  以上我们求最大公约数的方法就是辗转相除法。也叫欧几里德算法,它是由欧几里德在公元前300年左右首先提出的。利用辗转相除法求最大公约数的步骤如下:

  第一步:用较大的数m除以较小的数n得到一个商q0和一个余数r0;

  第二步:若r0=0,则n为m,n的最大公约数;若r0≠0,则用除数n除以余数r0得到一个商q1和一个余数r1;

  第三步:若r1=0,则r1为m,n的最大公约数;若r1≠0,则用除数r0除以余数r1得到一个商q2和一个余数r2;

  依次计算直至rn=0,此时所得到的rn-1即为所求的最大公约数。

  (1)辗转相除法的程序框图及程序

  程序框图:(略)

  程序:(当循环结构)直到型结构见书37面。

  INPUT “m=”;m

  INPUT “n=”;n

  IF m

  m=n

  n=x

  END IF

  r=m MOD n

  WHILE r0

  r=m MOD n

  m=n

  n=r

  WEND

  PRINT m

  END

  练习:利用辗转相除法求两数4081与20723的最大公约数(答案:53)

  2、更相减损术

  我国早期也有解决求最大公约数问题的算法,就是更相减损术。

  更相减损术求最大公约数的步骤如下:可半者半之,不可半者,副置分母·子之数,以少减多,更相减损,求其等也,以等数约之。

  翻译出来为:

  第一步:任意给出两个正数;判断它们是否都是偶数。若是,用2约简;若不是,执行第二步。第二步:以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。

  例2用更相减损术求98与63的最大公约数、

  解:由于63不是偶数,把98和63以大数减小数,并辗转相减,即:98-63=35

  63-35=28

  35-28=7

  28-7=21

  21-7=14

  14-7=7

  所以,98与63的最大公约数是7。

  练习:用更相减损术求两个正数84与72的最大公约数。(答案:12)

  三、对比归纳,得出结论

  3、比较辗转相除法与更相减损术的区别

  (1)都是求最大公约数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

  (2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到

高二数学教学计划模板【篇7】

  一、教材分析。

  1、教材地位、作用。

  本节课的内容选自《普通高中课程标准实验教科书数学必修3(A)版》第三章中的第3.2.1节古典概型。它安排在随机事件的概率之后,几何概型之前,学生还未学习排列组合的情况下教学的。

  古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位,是学习概率必不可少的内容,同时有利于理解概率的概念,有利于计算一些事件的概率,能解释生活中的一些问题。因此本节课的教学重点是理解古典概型的概念及利用古典概型求解随机事件的概率。

  2、学情分析。

  学生基础一般,但师生之间,学生之间情感融洽,上课互动氛围良好。他们具备一定的观察,类比,分析,归纳能力,但对知识的理解和方法的掌握在一些细节上不完备,反映在解题中就是思维不慎密,过程不完整。

  二、教学目标。

  1、知识与技能目标。

  (1)理解等可能事件的概念及概率计算公式。

  (2)能够准确计算等可能事件的概率。

  2、过程与方法。

  根据本节课的知识特点和学生的认知水平,教学中采用探究式和启发式教学法,通过生活中常见的实际问题引入课题,层层设问,经过思考交流、概括归纳,得到等可能性事件的概念及其概率公式,使学生对问题的理解从感性认识上升到理性认识。

  3、情感态度与价值观。

  概率问题与实际生活联系紧密,学生通过概率知识的学习,可以更好的理解随机现象的本质,掌握随机现象的规律,科学地分析、解释生活中的一些现象,初步形成实事求是的科学态度和锲而不舍的求学精神。

  三、重点、难点。

  1、重点:理解古典概型的概念及利用古典概型求解随机事件的概率。

  2、难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

  四、教学过程。

  1、创设情境,提出问题。

  师:在考试中遇到不会做的选择题同学们会怎么办?在你不会做的前提下,蒙对单选题容易还是蒙对不定项选择题容易?这是为什么?

  通过这个同学们经常会遇到的问题,引导学生合作探索新知识,符合“学生为主体,老师为主导”的现代教育观点,也符合学生的认知规律。随着新问题的提出,激发了学生的求知欲望,使课堂的有效思维增加。

  2、抽象思维。形成概念、

  师:考察试验一“抛掷一枚质地均匀的骰子”,有几种不同的结果,结果分别有哪些?

  生:在试验中随机事件有六个,即“1点”、“2点”、“3点”、“4点”、“5点”和“6点”。

  师:我们把上述试验中的随机事件称为基本事件,它是试验的每一个可能结果。

  师:考察试验二“抛掷一枚质地均匀的硬币”有哪些基本事件?

  生:在试验中基本事件有两个,即“正面朝上”和“反面朝上”。

  师:那基本事件有什么特点呢?

  问题:

  (1)在“抛掷一枚质地均匀的骰子”试验中,会同时出现“1点”和“2点”这两个基本事件吗?

  (2)事件“出现偶数点”包含了哪几个基本事件?

  由如上问题,分别得到基本事件如下的两个特点:

  (1)任何两个基本事件是互斥的;

  (2)任何事件(除不可能事件)都可以表示成基本事件的和。

  (让学生交流讨论,教师再加以总结、概括)

  让学生归纳与总结,鼓励学生用自己的语言表述,从而提高学生的表达能力与数学语言的组织能力

  例1:从字母中任意取出两个不同字母的试验中,有哪些基本事件?

  师:为了得到基本事件,我们可以按照某种顺序,把所有可能的结果写出来,本小题我们可以按照字母排序的顺序,用列举法列出所有基本事件的结果。

  解:所求的基本事件共有6个:

  ____________________________________________________________________________________。

  由于学生没有学习排列组合知识,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏,解决了求古典概型中基本事件总数这一难点,同时渗透了数形结合及分类讨论的数学思想。

  师:你能发现前面两个数学试验和例1有哪些共同特点吗?(先让学生交流讨论,然后教师抽学生回答,并在学生回答的基础上再进行补充)

  试验一中所有可能出现的基本事件有“1点”、“2点”、“3点”、“4点”、“5点”和“6点”6个,并且每个基本事件出现的可能性相等,都是;

  试验二中所有可能出现的基本事件有“正面朝上”和“反面朝上”2个,并且每个基本事件出现的可能性相等,都是;

  例1中所有可能出现的基本事件有“A”、“B”、“C”、“D”、“E”和“F”6个,并且每个基本事件出现的可能性相等,都是;

  经概括总结后得到:

  ①试验中所有可能出现的基本事件只有有限个;

  ②每个基本事件出现的可能性相等。

  我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型。

  学生在合作交流的探究氛围中思考、质疑、倾听、表述,体验到成功的喜悦,学会学习、学会合作,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳问题的能力。

  3、概念深化,加深理解。

  试验“向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的”。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果是圆面内所有的点,试验的所有可能结果数是无限的,虽然每一个试验结果出现的“可能性相同”,但这个试验不满足古典概型的第一个条件。

  试验“某同学随机地向一靶心进行射击,这一试验的结果只有有限个:命中10环、命中9环……命中5环和不中环’。你认为这是古典概型吗?为什么?

  生:不是古典概型,因为试验的所有可能结果只有7个,而命中10环、命中9环……命中5环和不中环的出现不是等可能的,即不满足古典概型的第二个条件。

  这两个问题的设计是为了让学生更加准确的把握古典概型的两个特点,突破了如何判断一个试验是否是古典概型这一教学难点,培养学生思维的深刻性与批判性。

  4、观察比较,推导公式。

  师:在古典概型下,随机事件出现的概率如何计算?(让学生讨论、思考交流)

  生:试验二中,出现各个点的概率相等,即

  P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)

  由概率的加法公式,得

  P(“1点”)+P(“2点”)+P(“3点”)+P(“4点”)+P(“5点”)+P(“6点”)=P(必然事件)=1

  因此P(“1点”)=P(“2点”)=P(“3点”)=P(“4点”)=P(“5点”)=P(“6点”)=

  进一步地,利用加法公式还可以计算这个试验中任何一个事件的概率,例如,

  P(“出现偶数点”)=P(“2点”)+P(“4点”)+P(“6点”)=++==

  P(“出现偶数点”)=?=

  师:根据上述试验,你能概括总结出,古典概型计算任何事件的概率计算公式吗?

  生:_________________________________________________________________。

  学生通过运用观察、比较方法得出古典概型的概率计算公式,体验数学知识形成的发生与发展的过程,体现具体到抽象、从特殊到一般的数学思想,同时让学生感受数学化归思想的优越性和这一做法的合理性。

  师:我们在使用古典概型的概率公式时,应该还要注意些什么呢?(先让学生自由说,教师再加以归纳)在使用古典概型的概率公式时,应该注意:

  ①要判断该概率模型是不是古典概型;

  ②要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

  5、应用与提高。

  例2:单选题是标准化考试中常用的题型,一般是从A,B,C,D四个选项中选择一个正确答案。如果考生掌握了考查的内容,他可以选择惟一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

  解:这是一个古典概型,因为试验的可能结果只有4个:选择A、选择B、选择C、选择D,从而由古典概型的概率计算公式得:

  探究:在标准化考试中既有单选题又有不定项选择题,不定项选择题是从A,B,C,D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?

  解:这是一个古典概型,因为试验的可能结果只有15个:选择A、选择B、选择C、选择D,选择AB、选择AC、选择AD、选择BC、选择BD、选择CD、选择ABC、选择ABD、选择ACD、选择BCD、选择ABCD,从而由古典概型的概率计算公式得:

  P(“答对”)=1/15

  解决了课前提出的思考题,让学生明确解决概率的计算问题的关键是:先要判断该概率模型是不是古典概型,再要找出随机事件A包含的基本事件的个数和试验中基本事件的总数。

  例3:同时掷两个骰子,计算:

  (1)一共有多少种不同的结果?

  (2)其中向上的点数之和是5的结果有多少种?

  (3)向上的点数之和是5的概率是多少?

  (教师先让学生独立完成,再抽两位不同答案的学生回答)

  学生1:

  ①所有可能的结果是:

  (1,1)(1,2)(1,3)(1,4)(1,5)(1,6)(2,2)(2,3)(2,4)(2,5)(2,6)(3,3)(3,4)(3,5)(3,6)(4,4)(4,5)(4,6)(5,5)(5,6)(6,6)共有21种。

  ②向上的点数之和为5的结果有2个,它们是(1,4)(2,3)。

  ③向上点数之和为5的结果(记为事件A)有2种,因此,由古典概型的概率计算公式可得

  学生2:

  ①掷一个骰子的结果有6种,我们把两个骰子标上记号1,2以便区分,由于1号骰子的每一个结果都可与2号骰子的任意一个结果配对,组成同时掷两个骰子的一个结果,我们可以用列表法得到(如图),其中第一个数表示1号骰子的结果,第二个数表示2号骰子的结果。

  由表中可知同时掷两个骰子的结果共有36种。

  ②在上面的所有结果中,向上的点数之和为5的结果有4种:(1,4),(2,3),(3,2),(4,1)。

  ③由于所有36种结果是等可能的,其中向上点数之和为5的结果(记为事件A)有4种,因此,由古典概型的概率计算公式可得

  师:上面同一个问题为什么会有两种不同的答案呢?(先让学生交流讨论,教师再抽学生回答)

  生:答案1是错的,原因是其中构造的21个基本事件不是等可能发生的,因此就不能用古典概型的概率公式求解。

  师:我们今后用古典概型的概率公式求解时,特别要验证“每个基本事件出现是等可能的”这个条件,否则计算出的概率将是错误的。

  本题通过学生的观察比较,发现两种结果不同的根本原因是——研究的问题是否满足古典概型,从而再次突出了古典概型这一教学重点,体现了学生的主体地位,逐渐使学生养成自主探究能力。同时培养学生运用数形结合的思想,提高发现问题、分析问题、解决问题的能力,增强学生数学思维情趣。

  6、知识梳理,课堂小结。

  (1)本节课你学习到了哪些知识?

  (2)本节课渗透了哪些数学思想方法?

  7、作业布置。

  (1)阅读本节教材内容

  (2)必做题课本130页练习第1,2题,课本134页习题3。2A组第4题

  (3)选做题课本134页习题B组第1题

  8、教学反思。

  本节课的教学设计以“问题串”的方式呈现为主,教学过程中师生共同合作,体验古典概型的特点,公式的生成、发现,把“数学发现”的权力还给学生,让学生感受知识形成的过程,获得数学发现的体验。将学习的主动权较完整地交还给学生。

  本节课始终本着在教师的引导下,学生通过讨论、归纳、探究等方式自主获取知识,从而达到满意的教学效果。构建利于学生学习的有效教学情境,较好地拓展师生的活动空间,符合新课程的理念。

高二数学教学计划模板【篇8】

  本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.

  ②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;

  ③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整

  体思想求解.

  (4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.

  1、 数列的定义及表示方法:

  2、 数列的项与项数:

  3、 有穷数列与无穷数列:

  4、 递增(减)、摆动、循环数列:

  5、 数列的通项公式an:

  6、 数列的前n项和公式Sn:

  7、 等差数列、公差d、等差数列的结构:

  8、 等比数列、公比q、等比数列的结构:

  9、一般数列的通项an与前n项和Sn的关系:an=

  10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。

  11、等差数列的前n项和公式:Sn= Sn= Sn=

  当d0时,Sn是关于n的二次式且常数项为0;当d=0时(a10),Sn=na1是关于n的正比例式。

  12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

  (其中a1为首项、ak为已知的第k项,an0)

  13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

  当q1时,Sn= Sn=

  14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等差数列。

  15、等差数列中,若m+n=p+q,则

  16、等比数列中,若m+n=p+q,则

  17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等比数列。

  18、两个等差数列与的和差的数列、仍为等差数列。

  19、两个等比数列与的积、商、倒数组成的数列

  、 、 仍为等比数列。

  20、等差数列的任意等距离的项构成的数列仍为等差数列。

  21、等比数列的任意等距离的项构成的数列仍为等比数列。

  22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

  23、三个数成等比的设法:a/q,a,aq;

  四个数成等比的错误设法:a/q3,a/q,aq,aq3

  24、为等差数列,则 (c0)是等比数列。

  25、(bn0)是等比数列,则 (c0且c 1) 是等差数列。

  26、分组法求数列的和:如an=2n+3n

  27、错位相减法求和:如an=(2n-1)2n

  28、裂项法求和:如an=1/n(n+1)

  29、倒序相加法求和:

  30、求数列的最大、最小项的方法:

  ① an+1-an= 如an= -2n2+29n-3

  ② an=f(n) 研究函数f(n)的增减性

  31、在等差数列 中,有关Sn 的最值问题常用邻项变号法求解:

  (1)当 0时,满足 的项数m使得 取最大值.

  (2)当 0时,满足 的项数m使得 取最小值。

  在解含绝对值的数列最值问题时,注意转化思想的应用。

  以上就是高二数学学习:高二数学数列的所有内容,希望对大家有所帮助!

高二数学教学计划模板【篇9】

  一、指导思想:

  本 学期,我们高二数学组全体成员将认真贯彻我校的教育教学工作要点,在学校教导处工作计划的指导下,以更新观念为前提,以育人为归宿,以提高课堂教学效率为 重点。转变教学理念,改进教学方法,优化教研模式,积极探索在新课程改革背景下的小学数学教研工作新体系。提高数学教学质量,努力让本组数学教师成为有思 想、有追求、有能力、有经验、有智慧、有作为的新型教师,使备课组的工作更上一个台阶。

  二、目标任务:

  1、努力提高数学教学质量,使各班数学成绩达到学校规定的有关标准。

  2、在数学学科教研教改中注重素质教育,让本组教师成为一支思想素质、业务素质过硬的数学教师队伍。

  3、狠抓生本教育,加强数学课堂改革力度,积极开展各项教研活动,提高现代教学水平,切实优化数学课堂教学,充分发挥多媒体教学手段,促进教学质量的提高。

  4、积极开展业务学习活动,在全组形成教研之风、互学之风、创新教育之风,共同提高教育教学水平。

  5、 加强集体备课。本学期,我们组将按照学校的教学计划如实开展教研活动,认真开展合作研练活动,按照个人研究、同伴交流、达成共识、主备撰写、实践改进、 反思提高的步骤进行集体备课,听课后认真评课,及时反馈,如教学内容安排否恰当。难点是否突破,教法是否得当,教学手段的使用,教学思想、方法的渗透。 是否符合素质教育的要求,老师的教学基本功等方面进行中肯,全面的评论、探讨。争取使我们的教学水平更上一个新的台阶。

  三、具体措施:

  1、把握教材关:

  认 真学习新课程标准,钻研教材,把握各单元、各节的教学要求和重难点,熟悉教材的特点和编者的意图,订好所教学科的教学计划。计划要体现每单元重难点以及采 取的措施,研究解决难点的方法。从而改进自己的教学方法和练习策略。对教材中存在的问题及教学中出现的问题要及时进行记录,及时进行反思,认真反思个人的 教育教学心得。

  2、规范日常工作:

  严格规范数学教学常规。每位教师要认真制定教学计划,认真备课、上课、布置和批改作业、辅导学生、组织数学学科的质量调查。高二上数学教学新计划高二上数学教学新计划。学生作业的规范性要求,包括学生书写作业的规范和教师批阅作业的规范。

  3、教师角色的变化:

  全组成员要积极实践生本教育,真正实现教师是学习的组织者、引导者,是学生的合作伙伴,不再是在讲的基础上扶着学生、牵着学生去掌握知识,而是要将知识放给学生,放心、放手地让学生自主学习。

  总之,我们愿与新课程同行,在探索中前进,在失败中成熟,把新课改引向深入。因为我们坚信我们的新课改最终可以使学生学会:用自己的眼睛去观察,用自己的头脑去思考,用自己的语言去表达,用自己的心灵去感悟。

  本学期,我主要从以下几个方面抓好教学:

  一做好常规教学工作,落实教学五个环节(备课、上课、作业、辅导和考评)。

  1.精心上好每一节课

  备课时从实际出发,精心设计每一节课,充分应用现代化教育手段为教学服务,提高四十五分钟课堂效率。

  2.严格控制测验,精心制作每一份复习资料和练习

  教学中配备资料应要求学生按教学进度完成相应的习题,老师要给予检查和必要的讲评,老师要提前向学生指出不做的题,以免影响学生的学习。试题的制作注重考试质量和试卷分析,定期进行学情分析,发现问题,寻找对策,及时解决,确保学生的学习积极性不断提高。

  3.做好作业批改和加强辅导工作

  教师的工作对象是活生生的对象──学生,这里需要关心、帮助及鼓励。我们要对学生的学习情况做大量的细致工作,批改作业、辅导疑难、及时鼓励等,特别是对已经出现数学学习困难的学生,教师的下班辅导更为重要。教师教学中,要尽快掌握班上学生的数学学习情况,有针对性地进行辅导工作,既要注意照顾好班上优生层,更不能忽视班上的困难学生。充分利用自习时间,对优生,指导与鼓励他们冒尖,适当开展培优竞赛辅导引导学生做好自主学习;对后进生要多进行个别的辅导,不仅给他们解疑难,还要给他们鼓信心、调动自身的学习积极性,帮助他们树立良好的学习态度,积极主动地去投入学习,变要我学为我要学。

  二、加强科研促教,大胆探索教学新模式

  积极响应学校开展构建自主学习模式的课题研究活动,研究学生的学法,使教学工作真正做到

  ①培养兴趣,多激发学生提出自己的问题,想自己的问题;

  ②教会想,会思考从而实现自己扩大知识量,增加思维量。

  探索学生自主学习的具体做法,重视实践学习与探究反省、联系与总结的过程,对于数学问题的学习,积极引导学生用做─比─问的方法来学习。做就是自己先审题、分析、试做,目的是训练和检查自己独立分析和解决问题的能力;比就是把自己的分析、做法同老师或书上的方法对比,找出优劣,发现问题;问就是提问题,总结经验:

  ①解法是怎样想出来的?关键是哪一步?自己为什么没想出来?

  ②能找到更好的解题途径吗?

  ③这个方法能推广吗?

  ④通过解这个题,我应该学到什么?

高二数学教学计划模板【篇10】

  本章是高考命题的主体内容之一,应切实进行全面、深入地复习,并在此基础上,突出解决下述几个问题:(1)等差、等比数列的证明须用定义证明,值得注意的是,若给出一个数列的前 项和 ,则其通项为 若 满足 则通项公式可写成 .(2)数列计算是本章的中心内容,利用等差数列和等比数列的通项公式、前 项和公式及其性质熟练地进行计算,是高考命题重点考查的内容.(3)解答有关数列问题时,经常要运用各种数学思想.善于使用各种数学思想解答数列题,是我们复习应达到的目标. ①函数思想:等差等比数列的通项公式求和公式都可以看作是 的函数,所以等差等比数列的某些问题可以化为函数问题求解.

  ②分类讨论思想:用等比数列求和公式应分为 及 ;已知 求 时,也要进行分类;

  ③整体思想:在解数列问题时,应注意摆脱呆板使用公式求解的思维定势,运用整

  体思想求解.

  (4)在解答有关的数列应用题时,要认真地进行分析,将实际问题抽象化,转化为数学问题,再利用有关数列知识和方法来解决.解答此类应用题是数学能力的综合运用,决不是简单地模仿和套用所能完成的.特别注意与年份有关的等比数列的第几项不要弄错.

  一、基本概念:

  1、 数列的定义及表示方法:

  2、 数列的项与项数:

  3、 有穷数列与无穷数列:

  4、 递增(减)、摆动、循环数列:

  5、 数列的通项公式an:

  6、 数列的前n项和公式Sn:

  7、 等差数列、公差d、等差数列的结构:

  8、 等比数列、公比q、等比数列的结构:

  二、基本公式:

  9、一般数列的通项an与前n项和Sn的关系:an=

  10、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d0时,an是关于n的一次式;当d=0时,an是一个常数。

  11、等差数列的前n项和公式:Sn= Sn= Sn=

  当d0时,Sn是关于n的二次式且常数项为0;当d=0时(a10),Sn=na1是关于n的正比例式。

  12、等比数列的通项公式: an= a1 qn-1 an= ak qn-k

  (其中a1为首项、ak为已知的第k项,an0)

  13、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);

  当q1时,Sn= Sn=

  三、有关等差、等比数列的结论

  14、等差数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等差数列。

  15、等差数列中,若m+n=p+q,则

  16、等比数列中,若m+n=p+q,则

  17、等比数列的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等比数列。

  18、两个等差数列与的和差的数列、仍为等差数列。

  19、两个等比数列与的积、商、倒数组成的数列

  、 、 仍为等比数列。

  20、等差数列的任意等距离的项构成的数列仍为等差数列。

  21、等比数列的任意等距离的项构成的数列仍为等比数列。

  22、三个数成等差的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d

  23、三个数成等比的设法:a/q,a,aq;

  四个数成等比的错误设法:a/q3,a/q,aq,aq3

  24、为等差数列,则 (c0)是等比数列。

  25、(bn0)是等比数列,则 (c0且c 1) 是等差数列。

  四、数列求和的常用方法:公式法、裂项相消法、错位相减法、倒序相加法等。关键是找数列的通项结构。

  26、分组法求数列的和:如an=2n+3n

  27、错位相减法求和:如an=(2n-1)2n

  28、裂项法求和:如an=1/n(n+1)

  29、倒序相加法求和:

  30、求数列的最大、最小项的方法:

  ① an+1-an= 如an= -2n2+29n-3

  ② an=f(n) 研究函数f(n)的增减性

  31、在等差数列 中,有关Sn 的最值问题常用邻项变号法求解:

  (1)当 0时,满足 的项数m使得 取最大值.

  (2)当 0时,满足 的项数m使得 取最小值。

  在解含绝对值的数列最值问题时,注意转化思想的应用。

  以上就是高二数学学习:高二数学数列的所有内容,希望对大家有所帮助!

高二数学教学计划模板【篇11】

  1。整体定位

  “解析几何初步”研究的问题是直线和圆,及其之间的关系,还有空间直角坐标系的概念。高中阶段解析几何内容的分布,除了“解析几何初步”外,在选修系列1,2中,都延续了解析几何的内容,设计了“圆锥曲线与方程”。在选修系列4的《几何证明选讲》中,还将继续研究圆锥曲线。研究圆锥曲线有两种方法:综合几何的方法和解析几何的方法。在选修系列4的《几何证明选讲》中,运用了综合几何的方法。

  “解析几何初步”是要依托直线的方程与圆的标准方程,让学生把握用代数方法解决几何问题的基本步骤,初步形成代数方法解决几何问题的能力,帮助学生理解解析几何的基本思想。

  2。具体要求

  (1)直线与方程

  ①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素;

  ②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;

  ③能根据斜率判定两条直线平行或垂直;

  ④根据确定直线位置关系的几何要素,探索并掌握直线方程的几种形式(点斜式、两点式及一般式),体会斜截式与一次函数的关系;

  ⑤能用解方程组的方法求两直线的交点坐标;

  ⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。

  (2)圆与方程

  ①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程;

  ②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系;

  ③能用直线和圆的方程解决一些简单的问题。

  (3)在平面“解析几何初步”的学习过程中,体会用代数方法处理几何问题的思想。

  (4)空间直角坐标系

  ①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会空间直角坐标系刻画点的位置;

  ②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。

  《标准》中对“解析几何初步”的要求只是阶段性要求,在选修系列1,2中,还将进一步学习圆锥曲线与方程的内容。因此,对本部分内容的教学要把握好“度”,特别是对于解析几何思想的理解不能要求一步到位。

  3。课标解读

  (1)要注重知识的发生与发展的过程

  解析几何初步的教学,要注重知识的发生与发展的过程,首先将几何问题代数化,用代数的语言描述几何元素及其关系,进而将几何问题代数化;处理代数问题;分析代数结果的几何含义,最终解决几何问题。同时,应强调借助几何直观理解代数关系的意义,即对代数关系的几何意义的解释。让学生在这样的过程中,不断地体会“数形结合”的思想方法。

  数学课程应返璞归真,努力揭示数学概念、法则、结论的发展过程和本质,要通过学生的自主探索活动,使学生理解数学概念、结论逐步形成的过程,体会蕴涵在其中的思想方法。在解析几何初步的教学中,同样要通过观察、操作探索,确定直线与圆的几何要素,并由此探索掌握直线与圆的几种形式的方程,探索掌握一些距离公式。

  比如如何在平面直角坐标系中描述直线,这是解析几何教学中遇到的第一个问题。在坐标系中,一条直线或者与x轴平行,或者与x轴相交。与x轴平行的直线的代数特征很简单,这条直线上的点的纵坐标是个常数,即y=a。除了x=a,还有什么方法可以刻画与x轴相交的直线?也就是如何用代数的方法刻画直线的斜率。

  (2)在高中阶段,直线的斜率一般一般有三种表示方式

  ①用倾斜角的正切

  这是传统教材的方式,由于倾斜角是大于等于0°小于180°,倾斜角与其正切一一对应的(90°除外);当然,也可以用倾斜角的余弦值表示直线的斜率,倾斜角与其余弦值是一一对应的,但这种表示要复杂一些,一般都选择使用倾斜角的正切。

  这需要先引入0°到180°的正切函数的概念。

  ②用向量

高二数学教学计划模板【篇12】

  1。有助于学生数形结合思想的培养。

  解析几何的本质是用代数的方法研究图形的几何性质,它沟通了代数与几何之间的联系,体现了数形结合的重要思想。在解析几何初步的学习中,经历将几何问题代数化、处理代数问题、分析代数结果的几何含义、解决几何问题的过程,有助于学生认识数学内容之间的内在联系,体会数形结合的思想,形成正确的数学观。

  2。是培养学生运算能力的重要载体。

  运算思想是数学中最重要的思想之一。解析几何的运算,往往有较强的综合性,设计相应的代数方程知识(包括消元思想、整体思想、函数思想、同解原理、韦达定理、方程的解、构造不等式、参变量代换、求解不等式)等内容,对学生计算能力要求较高。在解决解析几何问题时,要注重“数”与“形”的统一,在计算时,要结合图形自身的特点,充分挖掘图形的几何结论,这往往是解决问题的突破口和简化解题过程的有效方法。比如,涉及圆的问题时,注重运用圆的相关几何性质,对于直线与圆的位置关系要强化几何处理,淡化代数处理方法,解析几何独有的特点,最培养学生的运算能力起到了独特的作用。

  小编精心推荐数学教师工作计划 | 数学教学计划

分享

热门关注

教育教学年度工作计划2023怎么写

教育教学年度工作计划

七年级英语教学计划1500字精选

七年级英语教学计划

小学四年级体育教学计划精选

小学四年级体育教学计划

2023年春季小班教学工作计划范文

春季小班教学工作计划

2023初中语文教师教学工作计划

初中语文教师教学工作计划

高二数学教学计划合集

高二数学教学计划

高二物理教学计划模板

高二物理教学计划

人教版高二数学下学期教学计划合集

人教版数学下学期教学计划

最新高二政治教学计划1500字模板5篇

高二政治教学计划

初中历史教学计划1500字合集

初中历史教学计划