喜欢数学的朋友都喜欢挑战自己,对于数学中的各种公式运用都熟悉心中,欧拉公式是数学中比较优美的一个公式,那你清楚它怎么样计算吗?下面让留学群小编来告诉你。
欧拉公式是怎样计算的
复变函数中,e^(ix)=(cos x+isin x)称为欧拉公式,e是自然对数的底,i是虚数单位。
拓扑学中,在任何一个规则球面地图上,用 R记区域个 数 ,V记顶点个数 ,E记边界个数 ,则 R+ V- E= 2,这就是欧拉定理,它于 1640年由 Descartes首先给出证明 ,后来 Euler(欧拉 )于 1752年又独立地给出证明 ,我们称其为欧拉定理 ,在国外也有人称其 为 Descartes定理。
R+ V- E= 2就是欧拉公式。
欧拉公式在不同的学科中有着不同的含义。
比如复变函数:
把复指数函数与三角函数联系起来的一个公式,e^ix=cosx+isinx,e是自然对数的底,i是虚数单位。它将指数函数的定义域扩大到复数,建立了三角函数和指数函数的关系,它不仅出现在数学分析里,而且在复变函数论里也占有非常重要的地位,更被誉为“数学中的天桥”。
有关于“欧拉公式是怎样计算的”的详细内容,留学群小编都给大家整理出来了,如果你想要深入了解这方面的内容,可以直接来关注或者收藏我们网站。
推荐阅读: