等腰三角形是数学几何中一个重要的图形,在考试中也经常出现相关考点。下面是由留学群编辑为大家整理的“等腰三角形三线合一的用法有哪些”,仅供参考,欢迎大家阅读本文。
等腰三角形三线合一
三线合一,即在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线互相重合。例:已知等腰三角形的底边上的中线和高为一条,则可以说这条线段是底边对应顶点的角平分线。
应用
三线合一中的三线是在等腰的三角形的,它们分别是,一条是与顶角有关的,顶上的角的平分线,另两条是与底边(不是腰,但等边三角形正三角形特殊)有关的的,一条是底边的高,另一条是底边的垂直平分线。这是等腰三角形的一特殊的性质,应用它可以处理许多平面几何问题。
三线合一逆命题
①如果三角形中有一角的角平分线和它所对边的高重合,那么这个三角形是等腰三角形。
②如果三角形中有一边的中线和这条边上的高重合,那么这个三角形是等腰三角形。
③如果三角形中有一角的角平分线和它所对边的中线重合,那么这个三角形是等腰三角形。
拓展阅读:等腰三角形的性质
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角平分线,底边上的中线,底边上的高相互重合(简写成“等腰三角形三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.一般的等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴。但等边三角形(特殊的等腰三角形)有三条对称轴。每个角的角平分线所在的直线,三条中线所在的直线,和高所在的直线就是等边三角形的对称轴。
8.等腰三角形中腰长的平方等于底边上高的平方加底的一半的平方(勾股定理)。
9.等腰三角形的腰与它的高的关系:腰大于高;腰的平方等于高的平方加底的一半的平方。