数学作文高中主科之一,那么高二上册数学知识点有哪些呢。以下是由留学群编辑为大家整理的“高二下期数学知识点有哪些”,仅供参考,欢迎大家阅读。
高二下期数学知识点
一、曲线与方程
1.椭圆
椭圆的定义是椭圆章节的基础内容,高考对本节内容的考查可能仍然将以求椭圆的方程和研究椭圆的性质为主,两种题型均有可能出现.椭圆方面的知识与向量等知识的综合考查命题趋势较强。
2.双曲线
标准方程的求法:双曲线标准方程最常用的两种方法是定义法和待定系数法.利用定义法求解,首先要熟悉双曲线的定义,只要知道双曲线的焦点和双曲线上的任意一点的坐标都可以运用定义法求解其标准方程;解法二是利用待定系数法求解,是求双曲线方程的根本方法之一,其思想是根据题目中的条件确定双曲线方程中的系数a,b,主要是解方程组;解法三是利用共焦点曲线系方程求解,其要点是根据题目中的一个条件写出含一个参数的共焦点的二次曲线系方程,再根据另外一个条件求出这个参数.
3.抛物线
1)利用已知条件求抛物线方程,一般有两种方法:待定系数法和轨迹法。
2)韦达定理的熟练运用,可以防止运算复杂的焦点坐标,巧妙利用抛物线的性质进行解题。
3)焦点弦的几何性质是答题中容易忽略的问题,在复杂的求解抛物线方程中,运用好这方面的知识能够少走很多弯路。
用点差法解圆锥曲线的中点弦问题
二、空间几何体
1.空间几何体的考查主要以其识别和应用为主,以填空题的形式出现,分值大约在5分。对空间几何体的形状、位置关系、数量特征、表面积和体积的命题需要加以关注。
2.球的面积和体积:计算球的面积和体积就要求出球的半径,在具体的空间几何体中,首先要确定球心的位置,这样才能根据已知数据求出半径,除球以外的空间几何体在求体积时都离不开”高“,要注意使用线面垂直的相关定理确定高线。
三、正弦定理和余弦定理
1.正弦定理
在一个三角形中,各边和它所对角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R
2.余弦定理
三角形中,任意一边的平方等于另外两边的平方和减去另两边及其夹角的余弦的积的两倍。
3.例题:熊丹老师教你正弦定理做题时的注意事项
四、常用逻辑用语:
1、四种命题:
⑴原命题:若p则q;⑵逆命题:若q则p;⑶否命题:若 p则 q;⑷逆否命题:若 q则 p
注:1、原命题与逆否命题等价;逆命题与否命题等价。判断命题真假时注意转化。
2、注意命题的否定与否命题的区别:命题 否定形式是 ;否命题是 .命题“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.
3、逻辑联结词:
⑴且(and) :命题形式 p q; p q p q p q p
⑵或(or):命题形式 p q; 真 真 真 真 假
⑶非(not):命题形式 p . 真 假 假 真 假
假 真 假 真 真
假 假 假 假 真
“或命题”的真假特点是“一真即真,要假全假”;
“且命题”的真假特点是“一假即假,要真全真”;
“非命题”的真假特点是“一真一假”
4、充要条件
由条件可推出结论,条件是结论成立的充分条件;由结论可推出条件,则条件是结论成立的必要条件。
5、全称命题与特称命题:
短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号 表示。含有全体量词的命题,叫做全称命题。
短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号 表示,含有存在量词的命题,叫做存在性命题。
全称命题p: ; 全称命题p的否定 p: 。
特称命题p: ; 特称命题p的否定 p: ;
拓展阅读:如何提高数学成绩
错题分析法
对于数学,多做题是取得数学高分的保证。但是不能忽视纠错这个环节。有很多同学,他们同样是非常努力的,但是成绩总是不见提高,因为他们只是埋头题海之中,对做错的题重视不够。做了很多的题,完了错的还是做错,这样就得不到提高。要在保证题的数量的同时,把做错的题一定得搞清楚弄明白,最好能够反复再算几遍,争取下一次遇到同类型的题就可以拿下来,那么题海战术才能真正体现它的魅力所在。
总结归类
首先,根据多年的经验,我们将解题思路相近甚至相同的习题归类。其次静下心来思考解这类题有哪几种入手途径,每种途径在具体操作时我们应当注意什么问题。比如,使用韦达定理的时候我们要考虑一元二次方程是否有根,特别是我们在做圆锥曲线习题时,有的题目就是通过一元二次方程有根这个条件找参数的范围。
再次,我们必须选择一定数量的习题练习来验证我们的想法。这时候做题一定要仔细完整。接下来,对照答案检查做得是否正确。如果错误,就要分析自己的思路在哪里出了问题。最后,再回想一遍。以后考试,遇到此类习题就能轻松地找到入手途径,节省时间。