高中数学三角函数是比较难的一个模块,那同学们总结过高中数学的三角函数吗?下面是由留学群小编为大家整理的“高中数学三角函数公式大全”,仅供参考,欢迎大家阅读。
高中数学三角函数公式大全
两角和公式
sin(A+B) = sinAcosB+cosAsinB
sin(A-B) = sinAcosB-cosAsinB
cos(A+B) = cosAcosB-sinAsinB
cos(A-B) = cosAcosB+sinAsinB
tan(A+B) = (tanA+tanB)/(1-tanAtanB)
tan(A-B) = (tanA-tanB)/(1+tanAtanB)
cot(A+B) = (cotAcotB-1)/(cotB+cotA)
cot(A-B) = (cotAcotB+1)/(cotB-cotA)
02
倍角公式
tan2A = 2tanA/(1-tan^2 A)
Sin2A=2SinA?CosA
Cos2A = Cos^2 A--Sin^2 A
=2Cos^2 A—1
=1—2sin^2 A
三倍角公式
sin3A = 3sinA-4(sinA)^3;
cos3A = 4(cosA)^3 -3cosA
tan3a = tan a ? tan(π/3+a)? tan(π/3-a)
半角公式
sin(A/2) = √{(1--cosA)/2}
cos(A/2) = √{(1+cosA)/2}
tan(A/2) = √{(1--cosA)/(1+cosA)}
cot(A/2) = √{(1+cosA)/(1-cosA)}
tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)
03
和差化积
sin(a)+sin(b) = 2sin[(a+b)/2]cos[(a-b)/2]
sin(a)-sin(b) = 2cos[(a+b)/2]sin[(a-b)/2]
cos(a)+cos(b) = 2cos[(a+b)/2]cos[(a-b)/2]
cos(a)-cos(b) = -2sin[(a+b)/2]sin[(a-b)/2]
tanA+tanB=sin(A+B)/cosAcosB
积化和差
sin(a)sin(b) = -1/2*[cos(a+b)-cos(a-b)]
cos(a)cos(b) = 1/2*[cos(a+b)+cos(a-b)]
sin(a)cos(b) = 1/2*[sin(a+b)+sin(a-b)]
cos(a)sin(b) = 1/2*[sin(a+b)-sin(a-b)]
诱导公式
sin(-a) = -sin(a)
cos(-a) = cos(a)
sin(π/2-a) = cos(a)
cos(π/2-a) = sin(a)
sin(π/2+a) = cos(a)
cos(π/2+a) = -sin(a)
sin(π-a) = sin(a)
cos(π-a) = -cos(a)
sin(π+a) = -sin(a)
cos(π+a) = -cos(a)
tgA=tanA = sinA/cosA
万能公式
sin(a) = [2tan(a/2)] / {1+[tan(a/2)]^2}
cos(a) = {1-[tan(a/2)]^2} / {1+[tan(a/2)]^2}
tan(a) = [2tan(a/2)]/{1-[tan(a/2)]^2}
04
其他非重点三角函数
csc(a) = 1/sin(a)
sec(a) = 1/cos(a)
双曲函数
sinh(a) = [e^a-e^(-a)]/2
cosh(a) = [e^a+e^(-a)]/2
tg h(a) = sin h(a)/cos h(a)
公式一:
设α为任意角,终边相同的角的同一三角函数的值相等:
sin(2kπ+α)= sinα
cos(2kπ+α)= cosα
tan(2kπ+α)= tanα
cot(2kπ+α)= cotα
公式二:
设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
sin(π+α)= -sinα
cos(π+α)= -cosα
tan(π+α)= tanα
cot(π+α)= cotα
公式三:
任意角α与 -α的三角函数值之间的关系:
sin(-α)= -sinα
cos(-α)= cosα
tan(-α)= -tanα
cot(-α)= -cotα
公式四:
利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
sin(π-α)= sinα
cos(π-α)= -cosα
tan(π-α)= -tanα
cot(π-α)= -cotα
公式五:
利用公式-和公式三可以得到2π-α与α的三角函数值之间的关系:
sin(2π-α)= -sinα
cos(2π-α)= cosα
tan(2π-α)= -tanα
cot(2π-α)= -cotα
公式六:
π/2±α及3π/2±α与α的三角函数值之间的关系:
sin(π/2+α)= cosα
cos(π/2+α)= -sinα
05
三角函数口诀
三角函数是函数,象限符号坐标注。函数图象单位圆,周期奇偶增减现。
同角关系很重要,化简证明都需要。正六边形顶点处,从上到下弦切割。
中心记上数字1,连结顶点三角形。向下三角平方和,倒数关系是对角。
顶点任意一函数,等于后面两根除。诱导公式就是好,负化正后大化小。
变成税角好查表,化简证明少不了。二的一半整数倍,奇数化余偶不变。
将其后者视锐角,符号原来函数判。两角和的余弦值,化为单角好求值,
余弦积减正弦积,换角变形众公式。和差化积须同名,互余角度变名称。
计算证明角先行,注意结构函数名,保持基本量不变,繁难向着简易变。
逆反原则作指导,升幂降次和差积。条件等式的证明,方程思想指路明。
万能公式不一般,化为有理式居先。公式顺用和逆用,变形运用加巧用。
1加余弦想余弦,1减余弦想正弦,幂升一次角减半,升幂降次它为范。
三角函数反函数,实质就是求角度,先求三角函数值,再判角取值范围。
利用直角三角形,形象直观好换名,简单三角的方程,化为最简求解集。
拓展阅读:等差数列等比数列的一些常用公式
等差数列通项公式
an=a1+(n-1)d
等差数列前n项和公式
Sn=n×a1+n(n-1)d/2
或
Sn=n(a1+an)/2
等差数列其他公式定理
①a(n-k)+a(n+k)=2an
(如同a3 + a5=2a4或a5 + a10=2a7,并且k可以为小于n的任何正整数)
②若m+n=p+q
则am+an=ap+aq
③(am-an)/(m-n)=d
④若{an}和{bn}均为等差数列,那么{a(bn)}和{b(an)}也为等差数列
是否为等差数列判定方法
①a(n+1)-an=常数
②a(n-1)+a(n+1)=2an
等差数列前n项和其他公式
S(9n)-S(8n)=S(8n)-S(7n)=S(7n)-S(6n)=...=n^2d
等比数列通项公式
an=a1×q^(n-1)
等比数列前n项和公式
an=a1[1-q^(n-1)]/(1-q) (当q≠1时)
an=n×a1 (当q =1时)
等比数列其他公式定理
①a(n-k)×a(n+k)=an^2
②若m×n=p×q
则am×an=ap×aq
③(m-n)√(am-an)=q (注意这里的m-n是指开m-n次方)
是否为等比数列判定方法
①a(n+1)/an=常数
②a(n-1)×a(n+1)=an^2