新的学期,作为老师,也是要为教学做好准备。下面是由留学群小编为大家整理的“初一上册数学教案模板”,仅供参考,欢迎大家阅读。
初一上册数学教案模板(一)
一、教学目标
1、知识与技能:理解单项式,单项式的系数,单项式的次数的概念,说出它们之间的区别和联系,并能指出一个单项式的系数和次数。
2、过程与方法:初步学会观察,对比,归纳的方法;发展学生的观察能力,思维能力及分析能力。
3、情感与价值观:培养学生合作交流意识,渗透数学知识源于生活,又为生活而服务的辩证思想。
二、教学设想
本节属于概念教学课,力图体现概念形成的过程。本节课从生活中的实际问题引入,让学生经历由数字到用字母表示数家的过程,再提出问题,让学生列出相应关系式,学生探究式子的特点,从而引出单项式的概念。因此,课堂教学中,可以采用教师引导与学生参与相结合的方式,这样就可以促进师生互动,活跃课堂气氛,达到良好的教学效果。
三、教材分析
本章属于《全日制义务教育数学课程标准(实验稿)》中的"数与代数"领域。整式是在以前已经学习了有理数运算的基础上引进的,本节内容由本章引言中的问题引出,在实际问题中逐步归纳单项式,单项式系数和单项式次数的概念,在了解概念的基础上准确指出一个单项式的系数及次数,内容衔接上循序浙进,让学生乐于接受。
四、重点,难点
1、教学重点:单项式,单项式系数及单项式次数概念。
2、教学难点:区别单项式的系数和次数。
五、教学方法
通过实际问题架设学习探索平台,教师采用点拨,引导的方法,启发学生经历主动思考,自主探索及合作交流的过程来达到对知识的"发现"和接受,进而完成知识内化,使书本知识成为自己的知识。
六、教学过程
(一)创设情境,激趣导入。
问题1:举世瞩目的青藏铁路于2006年7月1日建成通车,是世界上海拨最高,路线最长的高原铁路。今天我们就来探讨这条铁路上有关路程的问题:
青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的速度是100千米/时,在非冻土地段的速度可以达到120千米/时,问:列车在冻土地段的行驶时,2小时能行驶多少千米3小时能行使多少千米t小时呢?
根据速度,时间和路程的关系:路程=速度*时间则
它2小时行驶的路程:100*2=200(千米),
它3小时行驶的路程:100*3=300(千米),
它t小时行驶的路程:100*t=100t(千米),
字母t表示时间,用含有字母t的'式子100t表示路程。
问题2:用含有字母的式子填空。解答教科书第54面思考题。
(1)6a2,a3(2)2。5x(3)vt(4)-n由此引和新课。
(二)合作交流,探索新知。
1、单项式概念的探索。
(1)以上几个式子有什么共同特征:
6a2是6×a×a的乘积。
a3是a×a×a的乘积。
2.5x是2.5×x的乘积。
vt是v×t的乘积。
-n是-1×n的乘积。
归纳:都表示数与字母的积。
(2)引出单项式的概念:
①教学活动:
倾听、思考、分析、思考。
②师生互动:
列式解答、倾听、理解、思考、归纳。
倾听、理解概念、举例集体评议。
③学生活动:
从生活中的实际问题引入,激发了学生的学习兴趣,对新课起着过渡作用,由浅入深,对新知识的掌握起着循序渐进的作用。
培养学生的分析能力及表达,及时强调让学生对新知识掌握得更加完整。
培养学生的分析,思考及归纳能力,加深对概念的了解.
培养学生的评价能力,为概念的引出.
(3)让学生举出单项式的例子。
2、单项式系数和次数的探索。
问题1:以上单项式有什么结构特点。
由数字因数和字母因数两部分组成。
问题2:分别说出它们的数字因数和各字母的指数。
单项式中的数字因数,叫做单项式的系数。
一个单项式中,所有字母的指数的和,叫做这个单项式的次数。
交流练习:同桌之间一人举出单项式,另一人指出单项式的系数及次数。
教师巡视指导,请各别学生展示交流成果。
3,例题教学
教科书55页例1
学生独立解决后互相交流,最后教师归纳并在黑板上加以规范。
(三)练习巩固,熟练技能。
1、教科书第56页练习第1,2题。
2、下列各式:-x+3,6x,其中是单项式的是。
(四)总结反思,拓展延伸。
1、让学生谈谈本节课的收获。
2、通过今天的学习,你想进一步探究的问题是什么
七、板书设计
2.1整式
一、青藏铁路问题(略)。
二、单项式的概念。
单项式系数及次数的概念。
三、例题讲解
八、点评
本教案的设计,符合学生的年龄特点,有利于学生探索重在让学生参与知识产生,发展,应用的全过程。让学生充分感知多项式及相关概念的形成过程,很发地发挥了学生的主体地位,但学生独立提出问题较少。
初一上册数学教案模板(二)
教学目的
1.通过对多个实际问题的分析,使学生体会到一元一次方程作为实际问题的数学模型的作用。
2.使学生会列一元一次方程解决一些简单的应用题。
3.会判断一个数是不是某个方程的解。
重点、难点
1.重点:会列一元一次方程解决一些简单的应用题。
2.难点:弄清题意,找出“相等关系”。
教学过程
一、复习提问
一本笔记本1.2元。小红有6元钱,那么她最多能买到几本这样的笔记本呢?
解:设小红能买到工本笔记本,那么根据题意,得
1.2x=6
因为1.2×5=6,所以小红能买到5本笔记本。
二、新授
问题1:某校初中一年级328名师生乘车外出春游,已有2辆校车可以乘坐64人,还需租用44座的客车多少辆?(让学生思考后,回答,教师再作讲评)
算术法:(328-64)÷44=264÷44=6(辆)
列方程:设需要租用x辆客车,可得。
44x+64=328(1)
解这个方程,就能得到所求的结果。
问:你会解这个方程吗?试试看?
问题2:在课外活动中,张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年以后你们的年龄是我年龄的三分之一?”
通过分析,列出方程:13+x=(45+x)
问:你会解这个方程吗?你能否从小敏同学的解法中得到启发?
把x=3代人方程(2),左边=13+3=16,右边=(45+3)=×48=16,
因为左边=右边,所以x=3就是这个方程的解。
这种通过试验的方法得出方程的解,这也是一种基本的数学思想方法。也可以据此检验一下一个数是不是方程的解。
问:若把例2中的“三分之一”改为“二分之一”,那么答案是多少?动手试一试,大家发现了什么问题?
同样,用检验的方法也很难得到方程的解,因为这里x的值很大。另外,有的方程的解不一定是整数,该从何试起?如何试验根本无法人手,又该怎么办?
三、巩固练习
教科书第3页练习1、2。
四、小结
本节课我们主要学习了怎样列方程解应用题的方法,解决一些实际问题。谈谈你的学习体会。
五、作业
教科书第3页,习题6.1第1、3题。
初一上册数学教案模板(三)
正数和负数
一、教学目的
(一)知识点目标:
1.了解正数和负数是怎样产生的。
2.知道什么是正数和负数。
3.理解数0表示的量的意义。
(二)能力训练目标:
1.体会数学符号与对应的思想,用正、负数表示具有相反意义的量的符号化方法。
2.会用正、负数表示具有相反意义的量。
(三)情感与价值观要求:
通过师生合作,联系实际,激发学生学好数学的热情。
教学重点:知道什么是正数和负数,理解数0表示的量的意义。
教学难点:理解负数,数0表示的量的意义。
教学方法:师生互动与教师讲解相结合。
教具准备:地图册(中国地形图)。
二、教学过程
引入新课:
1.活动:由两组各派两名同学进行如下活动:一名按老师的指令表演,另一名在黑板上速记,看哪一组记得最快、?
内容:老师说出指令:
向前两步,向后两步;
向前一步,向后三步;
向前两步,向后一步;
向前四步,向后两步。
如果学生不能引入符号表示,教师可和一个小组合作,用符号表示出+2、-2、+1、-3、+2、-1、+4、-2等。
[师]其实,在我们的生活中,运用这样的符号的地方很多,这节课,我们就来学习这种带有特殊符号、表示具有实际意义的数-----正数和负数。
讲授新课:
1.自然数的产生、分数的产生。
2.章头图。问题见教材。让学生思考-3~3℃、净胜球数与排名顺序、±0.5、-9的意义。
3、正数、负数的定义:我们把以前学过的0以外的数叫做正数,在这些数的前面带有“一”时叫做负数。根据需要有时在正数前面也加上“十”(正号)表示正数。
举例说明:3、2、0.5、等是正数(也可加上“十”)
-3、-2、-0.5、-等是负数。
4、数0既不是正,也不是负数,0是正数和负数的分界。
0℃是一个确定的温度,海拔为0的高度是海平面的平均高度,0的意义已不仅表示“没有”。
5、让学生举例说明正、负数在实际中的应用。展示图片(又见教材P5图1.1-2-3)让学生观察地形图上的标注和记录支出、存入信息的本地某银行的存折,说出你知道的信息。
巩固提高:练习:课本P5练习
课时小结:这节课我们学习了哪些知识?你能说一说吗?
课后作业:课本P7习题1.1的第1、2、4、5题。
活动与探究:在一次数学测验中,某班的平均分为85分,把高于平均分的高出部分记为正数。
(1)美美得95分,应记为多少?
(2)多多被记作一12分,他实际得分是多少?
课后反思
初一上册数学教案模板(四)
教学目的
1、使学生对整章的学习内容做一回顾,系统地把握全章的知识要点和基本技能。
2、通过例题和练习,使学生能较好地运用本章知识和技能解决有关问题。
重点、难点
判断图形是否是轴对称图形,线段的垂直平分线、角平分线的性质、等腰三角形的性质和判定及其应用是教学重点,而灵活运用上述性质解决问题、轴对称图案的设计是教学难点。
教学过程
一、知识回顾
问题1:轴对称图形的定义是什么?
它是判断图形是否是轴对称图形的依据。
问题2:是否会画轴对称图形的对称轴?
找出轴对称图形的任一组对称点,连结对称点,画对称点所连线段的垂直平分线,即得到该图形对称轴。
问题3:轴对称图形对称点的连线与对称轴有什么关系?
轴对称图形对称点的连线被对称轴垂直平分。
问题4:线段垂直平分线、角平分线具有什么性质?
线段垂直平分线上的点到线段两端的距离相等;角平分线上的点到角两边的距离相等。
问题5:等腰三角形有什么性质?
等腰三角形底边的中线、高线、顶角的平分线互相重合,等腰三角形的两个底角相等(等边对等角),等边三角形的三个角都等于60°。
问题6:如何判断三角形是等腰三角形?等边三角形?
如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边);有两个角是60°的三角形是等边三角形,有一个角是60°的等腰三角形是等边三角形。
二、例题
1、下列图案是轴对称图形的有()
A、1个D。2个C。3个D。4个
2、如右图所示,已知,OC平分∠AOB,D是OC上一点,DE⊥OA,DF⊥OB,垂足为E、F点,那么
(1)∠DEF与∠DFE相等吗?为什么?
(2)OE与OF相等吗?为什么?
三、巩固练习
如右图所示,已知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=l0cm,∠A=49°14′54″。求△BCD的周长和∠DBC度数。
四、课堂小结
通过本节课复习,同学们应掌握本章知识和技能,并运用所学知识和技能解决问题。