欢迎阅读由留学群编辑整理的2018国考每日一练:数量关系,希望对您有用。
1.早晨九点整,小东、小明和小红三个人同向而行,小明在小东前200米,小红在小明前300米。小东的速度是80米每分钟,小明的速度是50米每分钟,小红的速度是40米每分钟。在什么时刻时,三人互不并行且小东与小明、小红之间的距离是相同的( )
A.9:10 B.9:l4 C.9:24 D.9:32
2.某科室有40人参加体育活动,统一发放衬衫,衬衫编号为1~40,其中,穿编号为3的倍数的衬衫的人参加上午的足球赛,穿编号为5的倍数的衬衫的人参加下午的篮球赛,穿其余编号的衬衫的人员当观众。那么观众人数与只参加下午篮球赛的人数之比为( )
A.21︰8 B.7︰2 C.19︰8 D.21︰11
3.因业务调整,甲部门的半数业务骨干调入乙部门,甲部门的业务骨干占本部门总人数的比例变为10%。随后甲部门10名非业务骨干辞职,甲部门业务骨干占该本部门总人数的比例变为15%。业务调整前,甲部门有业务骨干( )名。
A.6 B.8 C.9 D.10
4.为增强员工间的团队合作意识,鼓励员工多参与集体体育活动,公司计划拿出不超过2000元的资金购买一批足球和篮球。已知足球和篮球的单价比为2∶3,单价和为90元,若要求购买足球和篮球的总数量是43个,且购买的篮球数量多于24个,则足球和篮球应各买多少个( )
A.足球18个,篮球25个 B.足球17个,篮球26个
C.足球16个,篮球27个 D.足球15个,篮球28个
5.要用篱笆围成面积均为4的直角三角形院子和长方形院子,在用料最省的情况下,两院子周边篱笆的长度之比为( )
下面是参考答案与解析。
1.【解析】A。根据题干中“小东与小明、小红之间的距离是相同的”可知,在所求时刻,小东在小明和小红之间。设过了x分钟,小东与小明、小红之间的距离相同,可列方程:(80-50)x-200=(200+300)-(80-40)x,解得x=10(分钟),A项正确。
2.【解析】B。根据题意,40÷3=13…1,则参加上午足球赛的有13人;参加下午篮球赛的有40÷5=8,则参加下午篮球赛的有8人;40÷(3×5)=2…10,则两种比赛均参加的有2人。根据二集合容斥公式A∪B=A+B-A∩B,至少参加一项比赛的有13+8-2=19(人),观众有40-19=21(人),只参加下午篮球赛的有8-2=6(人)。所以二者之比为21︰6=7︰2。
3.【解析】A。根据题干中“甲部门的半数业务骨干调入乙部门”可知,甲部门的业务骨干数为偶数,排除C项。根据人数变化前后业务骨干所占比例分别为10%和15%可知,业务调整前甲部门业务骨干人数的一半,必能被10%和15%整除,排除B、D两项。本题也可用常规方法列方程求解。
4.【解析】A。足球的价格为90÷(2+3)×2=36(元),篮球的价格为90-36=54(元)。设篮球买了x个,足球买了(43-x)个,可列不等式组
,解得
,且x为整数,则x只能为25。
本题也可运用代入排除法快速求解。将四个选项分别代入验证,A项,18×36+25×54=1998<2000,符合。B项比A项多了一个篮球,少了一个足球,而篮球比足球单价高18元,显然B项大于2000元。同理,C、D两项也大于2000元。
5.【解析】B。面积一定的直角三角形中,等腰直角三角形周长最小;面积一定的长方形中,正方形的周长最小(可用均值不等式证明)。因此,直角三角形院子周边篱笆长度为
,长方形院子周边篱笆长度为
。因此,两院子周边篱笆的长度之比为
。
公务员考试栏目精心推荐:
申论热点 | 申论范文 | 申论答题技巧 | 行测 | 国考真题
国家公务员考试网 | 国考报名入口 | 国考职位表 | 国考真题及答案 | 国考与省考的区别 |