留学群考研网为大家提供2017考研数学难点知识:常数项级数敛散性的判断,更多考研资讯请关注我们网站的更新!
2017考研数学难点知识:常数项级数敛散性的判断
常数项级数敛散性的判断难得主要原因有:
1.对数项级数收敛的概念理解不够;
2.对数项级数的性质把握不准,特别是到题目中不知道怎么去运用这些性质去判断;
3.对数项级数敛散性处理问题的方法不熟练。对考研来说,常数项级数的敛散性命题还是比较有规律可循,还没有出现过需要用特殊的方式处理的题目。
考生要把常数项级数敛散性的判断题目做好,首先需要做到明确处理常数项级数敛散性判断的步骤,其次要对常数项级数收敛的定义和性质理解好,特别要抓住性质的本质,最后就是要把握处理常数项级数收敛的方法,常见的方法有举反例、利用性质判别、判别法、定义。
本文先对处理常数项级数敛散性判断的步骤作个概述。首先要判断常数项级数的通项:
小编精心为您推荐:
考研大纲 | 考研经验 | 考研真题 | 考研答案 | 考研院校 | 考研录取 |