高中数学教案怎么写模板(22篇)

2025-08-21 13:14:34 高中数学教案怎么写模板

  高中教学计划小编推荐各科教学设计:

  语文数学英语历史地理政治化学物理生物美术音乐体育信息技术

  作为教学工作者,编写教案是必不可少的环节,它能帮助我们根据实际情况灵活调整教学进度。以下是高中数学教案的写作模板,供大家参考与借鉴,希望对您有所帮助。

高中数学教案怎么写模板(1)

  教学目标:

  1、使学生了解角的形成,理解角的概念掌握角的各种表示法;

  2、通过观察、操作培养学生的观察能力和动手操作能力。

  3、使学生掌握度、分、秒的进位制,会作度、分、秒间的单位互化

  4、采用自学与小组合作学习相结合的方法,培养学生主动参与、勇于探究的精神。

  教学重点:

  理解角的概念,掌握角的三种表示方法

  教学难点:

  掌握度、分、秒的进位制, ,会作度、分、秒间的单位互化

  教学手段:

  教具:电脑课件、实物投影、量角器

  学具:量角器需测量的角

  教学过程:

  一、建立角的概念

  (一)引入角(利用课件演示)

  1、从生活中引入

  提问:

  A、以前我们曾经认识过角,那你们能从这两个图形中指出哪些地方是角吗?

  B、在我们的生活当中存在着许许多多的角。一起看一看。谁能从这些常用的物品中找出角?

  2、从射线引入

  提问:

  A、昨天我们认识了射线,想从一点可以引出多少条射线?

  B、如果从一点出发任意取两条射线,那出现的是什么图形?

  C、哪两条射线可以组成一个角?谁来指一指。

  (二)认识角,总结角的定义

  3、 过渡:角是怎么形成的呢?一起看

  (1)、演示:老师在这画上一个点,现在从这点出发引出一条射线,再从这点出发引出第二条射线。

  提问:观察从这点引出了几条射线?此时所组成的图形是什么图形?

  (2)、判断下列哪些图形是角。

  (√) (×) (√) (×) (√)

  为何第二幅和第四幅图形不是角?(学生回答)

  谁能用自己的话来概括一下怎样组成的图形叫做角?

  总结:有公共端点的两条射线所组成的图形叫做角(angle)

  角的第二定义:角也可以看做由一条射线绕端点旋转所形成的图形.如下图中的角,可以看做射线OA绕端点0按逆时针方向旋转到OB所形成的我们把OA叫做角的始边,OB叫做角的终边.

  B

  0 A

  4、认识角的各部分名称,明确顶点、边的作用

  (1)观看角的图形提问:这个点叫什么?这两条射线叫什么?(学生边说师边标名称)

  (2)角可以画在本上、黑板上,那角的位置是由谁决定的?

  (3)顶点可以确定角的位置,从顶点引出的两条边可以组成一个角。

  5、学会用符号表示角

  提问:那么,角的符号是什么?该怎么写,怎么读的呢?(电脑显示)

  (1)可以标上三个大写字母,写作:∠ABC或∠CBA,读作:角ABC或角CBA.

  (2)观察这两种方法,有什么特点?(字母B都在中间)

  (3)所以,在只有一个角的时候,我们还可以写作: ∠B,读作:角B

  (4)为了方便,有时我们还可以标上数字,写作∠1,读作:角1

  (5)注:区别 “∠”和“ a , b 是正数,且,求证

  [分析]依题目特点,作差后重新组项,采用因式分解来变形.

  证明:(见课本)

  [点评]因式分解也是对差式变形的一种常用方法.此例将差式变形为几个因式的积的形式,在确定符号中,表达过程较复杂,如何书写证明过程,例3给出了一个好的示范.

  [点评]解这道题在判断符号时用了分类讨论,分类讨论是重要的数学 思想方法.要理解为什么分类,怎样分类.分类时要不重不漏.

  [字幕]例5甲、乙两人同时同地沿同一条路线走到同一地点.甲有一半时间以速度 m 行走,另一半时间以速度 n 行走;有一半路程乙以速度 m 行走,另一半路程以速度 n 行走,如果,问甲、乙两人谁先到达指定地点.

  [分析]设从出发地点至指定地点的路程为,甲、乙两人走完这段路程用的时间分别为,要回答题目中的问题,只要比较、的大小就可以了.

  解:(见课本)

  [点评]此题是一个实际问题,学习了如何利用比较法证明不等式的思想方法解决有关实际问题.要培养自己学数学,用数学的良好品质.

  设计意图:巩固比较法证明不等式的方法,掌握因式分解的变形方法和分类讨论确定符号的方法.培养学生应用知识解决实际问题的能力.

  【课堂练习】

  (教师活动)教师打出字幕练习,要求学生独立思考,完成练习;请甲、乙两位学生板演;巡视学生的解题情况,对正确的给予肯定,对偏差及时纠正;点评练习中存在的问题.

  (学生活动)在笔记本上完成练习,甲、乙两位同学板演.

  [字幕]练习:1.设,比较与的大小.

  2.已知,求证

  设计意图:掌握比较法证明不等式及思想方法的应用.灵活掌握因式分解法对差式的变形和分类讨论确定符号.反馈信息,调节课堂教学.

  【分析归纳、小结解法】

  (教师活动)分析归纳例题的解题过程,小结对差式变形、确定符号的常用方法和利用不等式解决实际问题的解题步骤.

  (学生活动)与教师一道小结,并记录在笔记本上.

  1.比较法不仅是证明不等式的一种基本、重要的方法,也是比较两个式子大小的一种重要方法.

  2.对差式变形的常用方法有:配方法,通分法,因式分解法等.

  3.会用分类讨论的方法确定差式的符号.

  4.利用不等式解决实际问题的解题步骤:①类比列方程解应用题的步骤.②分析题意,设未知数,找出数量关系(函数关系,相等关系或不等关系),③列出函数关系、等式或不等式,④求解,作答.

  设计意图:培养学生分析归纳问题的能力,掌握用比较法证明不等式的知识体系.

  (三)小结

  (教师活动)教师小结本节课所学的知识及数学 思想与方法.

  (学生活动)与教师一道小结,并记录笔记.

  本节课学习了对差式变形的一种常用方法因式分解法;对符号确定的分类讨论法;应用比较法的'思想解决实际问题.

  通过学习比较法证明不等式,要明确比较法证明不等式的理论依据,理解转化,使问题简化是比较法证明不等式中所蕴含的重要数学思想,掌握求差后对差式变形以及判断符号的重要方法,并在以后的学习中继续积累方法,培养用数学知识解决实际问题的能力.

  设计意图:培养学生对所学的知识进行概括归纳的能力,巩固所学的知识,领会化归、类比、分类讨论的重要数学 思想方法.

  (四)布置作业

  1.课本作业:P17 7、8。

  2,思考题:已知,求证

  3.研究性题:对于同样的距离,船在流水中来回行驶一次的时间和船在静水中来回行驶一次的时间是否相等?(假设船在流水中的速度和部在静水中的速度保持不变)

  设计意图:思考题让学生了解商值比较法,掌握分类讨论的思想.研究性题是使学生理论联系实际,用数学解决实际问题,提高应用数学的能力.

  (五)课后点评

  1.教学评价、反馈调节措施的构想:本节课采用启发引导,讲练结合的授课方式,发挥教师主导作用,体现学生主体地位,通过启发诱导学生深入思考问题,解决问题,反馈学习信息,调节教学活动.

  2.教学措施的设计:由于对差式变形,确定符号是掌握比较法证明不等式的关键,本节课在上节课的基础上继续学习差式变形的方法和符号的确定,例3和例4分别使学生掌握因式分解变形和分类讨论确定符号,例5使学生对所学的知识会应用.例题设计目的在于突出重点,突破难点,学会应用

高中数学教案怎么写模板(2)

  整体设计

  教学分析

  我们在初中的学习过程中,已了解了整数指数幂的概念和运算性质。从本节开始我们将在回顾平方根和立方根的基础上,类比出正数的n次方根的定义,从而把指数推广到分数指数。进而推广到有理数指数,再推广到实数指数,并将幂的运算性质由整数指数幂推广到实数指数幂。

  教材为了让学生在学习之外就感受到指数函数的实际背景,先给出两个具体例子:GDP的增长问题和碳14的衰减问题。前一个问题,既让学生回顾了初中学过的整数指数幂,也让学生感受到其中的函数模型,并且还有思想教育价值。后一个问题让学生体会其中的函数模型的同时,激发学生探究分数指数幂、无理数指数幂的兴趣与欲望,为新知识的学习作了铺垫。

  本节安排的内容蕴涵了许多重要的数学思想方法,如推广的思想(指数幂运算律的推广)、类比的思想、逼近的思想(有理数指数幂逼近无理数指数幂)、数形结合的思想(用指数函数的图象研究指数函数的性质)等,同时,充分关注与实际问题的结合,体现数学的应用价值。

  根据本节内容的特点,教学中要注意发挥信息技术的力量,尽量利用计算器和计算机创设教学情境,为学生的数学探究与数学思维提供支持。

  三维目标

  1、通过与初中所学的知识进行类比,理解分数指数幂的概念,进而学习指数幂的性质。掌握分数指数幂和根式之间的互化,掌握分数指数幂的运算性质。培养学生观察分析、抽象类比的能力。

  2、掌握根式与分数指数幂的互化,渗透“转化”的数学思想。通过运算训练,养成学生严谨治学,一丝不苟的学习习惯,让学生了解数学来自生活,数学又服务于生活的哲理。

  3、能熟练地运用有理指数幂运算性质进行化简、求值,培养学生严谨的思维和科学正确的计算能力。

  4、通过训练及点评,让学生更能熟练掌握指数幂的运算性质。展示函数图象,让学生通过观察,进而研究指数函数的性质,让学生体验数学的简洁美和统一美。

  重点难点

  教学重点

  (1)分数指数幂和根式概念的理解。

  (2)掌握并运用分数指数幂的运算性质。

  (3)运用有理指数幂的性质进行化简、求值。

  教学难点

  (1)分数指数幂及根式概念的理解。

  (2)有理指数幂性质的灵活应用。

  课时安排

  3课时

  教学过程

  第1课时

  作者:路致芳

  导入新课

  思路1.同学们在预习的过程中能否知道考古学家如何判断生物的发展与进化,又怎样判断它们所处的年代?(考古学家是通过对生物化石的研究来判断生物的发展与进化的,第二个问题我们不太清楚)考古学家是按照这样一条规律推测生物所处的年代的。教师板书本节课题:指数函数——指数与指数幂的运算。

  思路2.同学们,我们在初中学习了平方根、立方根,那么有没有四次方根、五次方根…n次方根呢?答案是肯定的,这就是我们本堂课研究的课题:指数函数——指数与指数幂的运算。

  推进新课

  新知探究

  提出问题

  (1)什么是平方根?什么是立方根?一个数的平方根有几个,立方根呢?

  (2)如x4=a,x5=a,x6=a,根据上面的结论我们又能得到什么呢?

  (3)根据上面的结论我们能得到一般性的结论吗?

  (4)可否用一个式子表达呢?

  活动:教师提示,引导学生回忆初中的时候已经学过的平方根、立方根是如何定义的,对照类比平方根、立方根的定义解释上面的式子,对问题(2)的结论进行引申、推广,相互交流讨论后回答,教师及时启发学生,具体问题一般化,归纳类比出n次方根的概念,评价学生的思维。

  讨论结果:(1)若x2=a,则x叫做a的平方根,正实数的平方根有两个,它们互为相反数,如:4的平方根为±2,负数没有平方根,同理,若x3=a,则x叫做a的立方根,一个数的立方根只有一个,如:-8的立方根为-2.

  (2)类比平方根、立方根的定义,一个数的四次方等于a,则这个数叫a的四次方根。一个数的五次方等于a,则这个数叫a的五次方根。一个数的六次方等于a,则这个数叫a的六次方根。

  (3)类比(2)得到一个数的n次方等于a,则这个数叫a的n次方根。

  (4)用一个式子表达是,若xn=a,则x叫a的n次方根。

  教师板书n次方根的意义:

  一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整数集。

  可以看出数的平方根、立方根的概念是n次方根的概念的特例。

  提出问题

  (1)你能根据n次方根的意义求出下列数的n次方根吗?(多媒体显示以下题目)。

  ①4的平方根;②±8的立方根;③16的4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。

  (2)平方根,立方根,4次方根,5次方根,7次方根,分别对应的方根的指数是什么数,有什么特点?4,±8,16,-32,32,0,a6分别对应什么性质的数,有什么特点?

  (3)问题(2)中,既然方根有奇次的也有偶次的,数a有正有负,还有零,结论有一个的,也有两个的,你能否总结一般规律呢?

  (4)任何一个数a的偶次方根是否存在呢?

  活动:教师提示学生切实紧扣n次方根的概念,求一个数a的n次方根,就是求出的那个数的n次方等于a,及时点拨学生,从数的分类考虑,可以把具体的数写出来,观察数的特点,对问题(2)中的结论,类比推广引申,考虑要全面,对回答正确的学生及时表扬,对回答不准确的学生提示引导考虑问题的思路。

  讨论结果:(1)因为±2的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分别是±2,±2,±2,2,-2,0,a2.

  (2)方根的指数是2,3,4,5,7…特点是有奇数和偶数。总的来看,这些数包括正数,负数和零。

  (3)一个数a的奇次方根只有一个,一个正数a的偶次方根有两个,是互为相反数。0的任何次方根都是0.

  (4)任何一个数a的偶次方根不一定存在,如负数的偶次方根就不存在,因为没有一个数的偶次方是一个负数。

  类比前面的平方根、立方根,结合刚才的讨论,归纳出一般情形,得到n次方根的性质:

  ①当n为偶数时,正数a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0)。

  ②n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示。

  ③负数没有偶次方根;0的任何次方根都是零。

  上面的文字语言可用下面的式子表示:

  a为正数:n为奇数,a的n次方根有一个为na,n为偶数,a的n次方根有两个为±na.

  a为负数:n为奇数,a的n次方根只有一个为na,n为偶数,a的n次方根不存在。

  零的n次方根为零,记为n0=0.

  可以看出数的平方根、立方根的性质是n次方根的性质的特例。

  思考

  根据n次方根的性质能否举例说明上述几种情况?

  活动:教师提示学生对方根的性质要分类掌握,即正数的奇偶次方根,负数的奇次方根,零的任何次方根,这样才不重不漏,同时巡视学生,随机给出一个数,我们写出它的平方根,立方根,四次方根等,看是否有意义,注意观察方根的形式,及时纠正学生在举例过程中的问题。

  解:答案不,比如,64的立方根是4,16的四次方根为±2,-27的5次方根为5-27,而-27的4次方根不存在等。其中5-27也表示方根,它类似于na的形式,现在我们给式子na一个名称——根式。

  根式的概念:

  式子na叫做根式,其中a叫做被开方数,n叫做根指数。

  如3-27中,3叫根指数,-27叫被开方数。

  思考

  nan表示an的n次方根,式子nan=a一定成立吗?如果不一定成立,那么nan等于什么?

  活动:教师让学生注意讨论n为奇偶数和a的符号,充分让学生多举实例,分组讨论。教师点拨,注意归纳整理。

  〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。

  解答:根据n次方根的意义,可得:(na)n=a.

  通过探究得到:n为奇数,nan=a.

  n为偶数,nan=|a|=a,-a,a≥0,ab)。

  活动:求某些式子的值,首先考虑的应是什么,明确题目的要求是什么,都用到哪些知识,关键是啥,搞清这些之后,再针对每一个题目仔细分析。观察学生的解题情况,让学生展示结果,抓住学生在解题过程中出现的问题并对症下药。求下列各式的值实际上是求数的方根,可按方根的运算性质来解,首先要搞清楚运算顺序,目的是把被开方数的符号定准,然后看根指数是奇数还是偶数,如果是奇数,无需考虑符号,如果是偶数,开方的结果必须是非负数。

  解:(1)3(-8)3=-8;

  (2)(-10)2=10;

  (3)4(3-π)4=π-3;

  (4)(a-b)2=a-b(a>b)。

  点评:不注意n的奇偶性对式子nan的值的影响,是导致问题出现的一个重要原因,要在理解的基础上,记准,记熟,会用,活用。

  变式训练

  求出下列各式的值:

  (1)7(-2)7;

  (2)3(3a-3)3(a≤1);

  (3)4(3a-3)4.

  解:(1)7(-2)7=-2,

  (2)3(3a-3)3(a≤1)=3a-3,

  (3)4(3a-3)4=

  点评:本题易错的是第(3)题,往往忽视a与1大小的讨论,造成错解。

  思路2

  例1下列各式中正确的是

  A.4a4=a

  B.6(-2)2=3-2

  C.a0=1

  D.10(2-1)5=2-1

  活动:教师提示,这是一道选择题,本题考查n次方根的运算性质,应首先考虑根据方根的意义和运算性质来解,既要考虑被开方数,又要考虑根指数,严格按求方根的步骤,体会方根运算的实质,学生先思考哪些地方容易出错,再回答。

  解析:(1)4a4=a,考查n次方根的运算性质,当n为偶数时,应先写nan=|a|,故A项错。

  (2)6(-2)2=3-2,本质上与上题相同,是一个正数的偶次方根,根据运算顺序也应如此,结论为6(-2)2=32,故B项错。

  (3)a0=1是有条件的,即a≠0,故C项也错。

  (4)D项是一个正数的偶次方根,根据运算顺序也应如此,故D项正确。所以答案选D.

  答案:D

  点评:本题由于考查n次方根的运算性质与运算顺序,有时极易选错,选四个答案的情况都会有,因此解题时千万要细心。

  例2 3+22+3-22=__________.

  活动:让同学们积极思考,交流讨论,本题乍一看内容与本节无关,但仔细一想,我们学习的内容是方根,这里是带有双重根号的式子,去掉一层根号,根据方根的运算求出结果是解题的关键,因此将根号下面的式子化成一个完全平方式就更为关键了,从何处入手?需利用和的平方公式与差的平方公式化为完全平方式。正确分析题意是关键,教师提示,引导学生解题的思路。

  解析:因为3+22=1+22+(2)2=(1+2)2=2+1,

  3-22=(2)2-22+1=(2-1)2=2-1,

  所以3+22+3-22=22.

  答案:22

  点评:不难看出3-22与3+22形式上有些特点,即是对称根式,是A±2B形式的式子,我们总能找到办法把其化成一个完全平方式。

  思考

  上面的例2还有别的解法吗?

  活动:教师引导,去根号常常利用完全平方公式,有时平方差公式也可,同学们观察两个式子的特点,具有对称性,再考虑并交流讨论,一个是“+”,一个是“-”,去掉一层根号后,相加正好抵消。同时借助平方差,又可去掉根号,因此把两个式子的和看成一个整体,两边平方即可,探讨得另一种解法。

  另解:利用整体思想,x=3+22+3-22,

  两边平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.

  点评:对双重二次根式,特别是A±2B形式的式子,我们总能找到办法将根号下面的式子化成一个完全平方式,问题迎刃而解,另外对A+2B±A-2B的式子,我们可以把它们看成一个整体利用完全平方公式和平方差公式去解。

  变式训练

  若a2-2a+1=a-1,求a的取值范围。

  解:因为a2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,

  即a-1≥0,

  所以a≥1.

  点评:利用方根的运算性质转化为去绝对值符号,是解题的关键。

  知能训练

  (教师用多媒体显示在屏幕上)

  1、以下说法正确的是

  A.正数的n次方根是一个正数

  B.负数的`n次方根是一个负数

  C.0的n次方根是零

  D.a的n次方根用na表示(以上n>1且n∈正整数集)

  答案:C

  2、化简下列各式:

  (1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.

  答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。

  3、计算7+40+7-40=__________.

  解析:7+40+7-40

  =(5)2+25?2+(2)2+(5)2-25?2+(2)2

  =(5+2)2+(5-2)2

  =5+2+5-2

  =25.

  答案:25

  拓展提升

  问题:nan=a与(na)n=a(n>1,n∈N)哪一个是恒等式,为什么?请举例说明。

  活动:组织学生结合前面的例题及其解答,进行分析讨论,解决这一问题要紧扣n次方根的定义。

  通过归纳,得出问题结果,对a是正数和零,n为偶数时,n为奇数时讨论一下。再对a是负数,n为偶数时,n为奇数时讨论一下,就可得到相应的结论。

  解:(1)(na)n=a(n>1,n∈N)。

  如果xn=a(n>1,且n∈N)有意义,则无论n是奇数或偶数,x=na一定是它的一个n次方根,所以(na)n=a恒成立。

  例如:(43)4=3,(3-5)3=-5.

  (2)nan=a,|a|,当n为奇数,当n为偶数。

  当n为奇数时,a∈R,nan=a恒成立。

  例如:525=2,5(-2)5=-2.

  当n为偶数时,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a1,n∈N)是恒等式,nan=a(n>1,n∈N)是有条件的。

  点评:实质上是对n次方根的概念、性质以及运算性质的深刻理解。

  课堂小结

  学生仔细交流讨论后,在笔记上写出本节课的学习收获,教师用多媒体显示在屏幕上。

  1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整数集。用式子na表示,式子na叫根式,其中a叫被开方数,n叫根指数。

  (1)当n为偶数时,a的n次方根有两个,是互为相反数,正的n次方根用na表示,如果是负数,负的n次方根用-na表示,正的n次方根与负的n次方根合并写成±na(a>0)。

  (2)n为奇数时,正数的n次方根是一个正数,负数的n次方根是一个负数,这时a的n次方根用符号na表示。

  (3)负数没有偶次方根。0的任何次方根都是零。

  2、掌握两个公式:n为奇数时,(na)n=a,n为偶数时,nan=|a|=a,-a,a≥0,a

  解析:因为5

  答案:2a-13

  3.5+26+5-26=__________.

  解析:对双重二次根式,我们觉得难以下笔,我们考虑只有在开方的前提下才可能解出,由此提示我们想办法去掉一层根式,

  不难看出5+26=(3+2)2=3+2.

  同理5-26=(3-2)2=3-2.

  所以5+26+5-26=23.

  答案:23

  设计感想

  学生已经学习了数的平方根和立方根,根式的内容是这些内容的推广,本节课由于方根和根式的概念和性质难以理解,在引入根式的概念时,要结合已学内容,列举具体实例,根式na的讲解要分n是奇数和偶数两种情况来进行,每种情况又分a>0,a0,

  ①;

  ②a8=(a4)2=a4=,;

  ③4a12=4(a3)4=a3=;

  ④2a10=2(a5)2=a5= 。

  (3)利用(2)的规律,你能表示下列式子吗?

  ,,,(x>0,m,n∈正整数集,且n>1)。

  (4)你能用方根的意义来解释(3)的式子吗?

  (5)你能推广到一般的情形吗?

  活动:学生回顾初中学习的整数指数幂及运算性质,仔细观察,特别是每题的开始和最后两步的指数之间的关系,教师引导学生体会方根的意义,用方根的意义加以解释,指点启发学生类比(2)的规律表示,借鉴(2)(3),我们把具体推广到一般,对写正确的同学及时表扬,其他学生鼓励提示。

  讨论结果:(1)整数指数幂的运算性质:an=a?a?a?…?a,a0=1(a≠0);00无意义;

  a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.

  (2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。实质上①5a10=,②a8=,③4a12=,④2a10=结果的a的指数是2,4,3,5分别写成了105,82,124,105,形式上变了,本质没变。

  根据4个式子的最后结果可以总结:当根式的被开方数的指数能被根指数整除时,根式可以写成分数作为指数的形式(分数指数幂形式)。

  (3)利用(2)的规律,453=,375=,5a7=,nxm= 。

  (4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是。

  结果表明方根的结果和分数指数幂是相通的。

  (5)如果a>0,那么am的n次方根可表示为nam=,即=nam(a>0,m,n∈正整数集,n>1)。

  综上所述,我们得到正数的正分数指数幂的意义,教师板书:

  规定:正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1)。

  提出问题

  (1)负整数指数幂的意义是怎样规定的?

  (2)你能得出负分数指数幂的意义吗?

  (3)你认为应怎样规定零的分数指数幂的意义?

  (4)综合上述,如何规定分数指数幂的意义?

  (5)分数指数幂的意义中,为什么规定a>0,去掉这个规定会产生什么样的后果?

  (6)既然指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质是否也适用于有理数指数幂呢?

  活动:学生回想初中学习的情形,结合自己的学习体会回答,根据零的整数指数幂的意义和负整数指数幂的意义来类比,把正分数指数幂的意义与负分数指数幂的意义融合起来,与整数指数幂的运算性质类比可得有理数指数幂的运算性质,教师在黑板上板书,学生合作交流,以具体的实例说明a>0的必要性,教师及时作出评价。

  讨论结果:(1)负整数指数幂的意义是:a-n=1an(a≠0),n∈N+。

  (2)既然负整数指数幂的意义是这样规定的,类比正数的正分数指数幂的意义可得正数的负分数指数幂的意义。

  规定:正数的负分数指数幂的意义是= =1nam(a>0,m,n∈=N+,n>1)。

  (3)规定:零的分数指数幂的意义是:零的正分数次幂等于零,零的负分数指数幂没有意义。

  (4)教师板书分数指数幂的意义。分数指数幂的意义就是:

  正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是= =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义。

  (5)若没有a>0这个条件会怎样呢?

  如=3-1=-1,=6(-1)2=1具有同样意义的两个式子出现了截然不同的结果,这只说明分数指数幂在底数小于零时是无意义的。因此在把根式化成分数指数时,切记要使底数大于零,如无a>0的条件,比如式子3a2=,同时负数开奇次方是有意义的,负数开奇次方时,应把负号移到根式的外边,然后再按规定化成分数指数幂,也就是说,负分数指数幂在有意义的情况下总表示正数,而不是负数,负数只是出现在指数上。

  (6)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数。

  有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:

  ①ar?as=ar+s(a>0,r,s∈Q),

  ②(ar)s=ars(a>0,r,s∈Q),

  ③(a?b)r=arbr(a>0,b>0,r∈Q)。

  我们利用分数指数幂的意义和有理数指数幂的运算性质可以解决一些问题,来看下面的例题。

  应用示例

  例1求值:(1);(2);(3)12-5;(4) 。

  活动:教师引导学生考虑解题的方法,利用幂的运算性质计算出数值或化成最简根式,根据题目要求,把底数写成幂的形式,8写成23,25写成52,12写成2-1,1681写成234,利用有理数幂的运算性质可以解答,完成后,把自己的答案用投影仪展示出来。

  解:(1) =22=4;

  (2)=5-1=15;

  (3)12-5=(2-1)-5=2-1×(-5)=32;

  (4)=23-3=278.

  点评:本例主要考查幂值运算,要按规定来解。在进行幂值运算时,要首先考虑转化为指数运算,而不是首先转化为熟悉的根式运算,如=382=364=4.

  例2用分数指数幂的形式表示下列各式。

  a3?a;a2?3a2;a3a(a>0)。

  活动:学生观察、思考,根据解题的顺序,把根式化为分数指数幂,再由幂的运算性质来运算,根式化为分数指数幂时,要由里往外依次进行,把握好运算性质和顺序,学生讨论交流自己的解题步骤,教师评价学生的解题情况,鼓励学生注意总结。

  解:a3?a=a3? =;

  a2?3a2=a2? =;

  a3a= 。

  点评:利用分数指数幂的意义和有理数指数幂的运算性质进行根式运算时,其顺序是先把根式化为分数指数幂,再由幂的运算性质来运算。对于计算的结果,不强求统一用什么形式来表示,没有特别要求,就用分数指数幂的形式来表示,但结果不能既有分数指数又有根式,也不能既有分母又有负指数。

  例3计算下列各式(式中字母都是正数)。

  (1);

  (2)。

  活动:先由学生观察以上两个式子的特征,然后分析,四则运算的顺序是先算乘方,再算乘除,最后算加减,有括号的先算括号内的,整数幂的运算性质及运算规律扩充到分数指数幂后,其运算顺序仍符合我们以前的四则运算顺序,再解答,把自己的答案用投影仪展示出来,相互交流,其中要注意到(1)小题是单项式的乘除运算,可以用单项式的乘除法运算顺序进行,要注意符号,第(2)小题是乘方运算,可先按积的乘方计算,再按幂的乘方进行计算,熟悉后可以简化步骤。

  解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;

  (2)=m2n-3=m2n3.

  点评:分数指数幂不表示相同因式的积,而是根式的另一种写法。有了分数指数幂,就可把根式转化成分数指数幂的形式,用分数指数幂的运算法则进行运算了。

  本例主要是指数幂的运算法则的综合考查和应用。

  变式训练

  求值:(1)33?33?63;

  (2)627m3125n64.

  解:(1)33?33?63= =32=9;

  (2)627m3125n64= =9m225n4=925m2n-4.

  例4计算下列各式:

  (1)(325-125)÷425;

  (2)a2a?3a2(a>0)。

  活动:先由学生观察以上两个式子的特征,然后分析,化为同底。利用分数指数幂计算,在第(1)小题中,只含有根式,且不是同次根式,比较难计算,但把根式先化为分数指数幂再计算,这样就简便多了,第(2)小题也是先把根式转化为分数指数幂后再由运算法则计算,最后写出解答。

  解:(1)原式=

  = =65-5;

  (2)a2a?3a2= =6a5.

  知能训练

  课本本节练习1,2,3

  【补充练习】

  教师用实物投影仪把题目投射到屏幕上让学生解答,教师巡视,启发,对做得好的同学给予表扬鼓励。

  1、(1)下列运算中,正确的是

  A.a2?a3=a6 B.(-a2)3=(-a3)2

  C.(a-1)0=0 D.(-a2)3=-a6

  (2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意义的是

  A.①② B.①③ C.①②③④ D.①③④

  (3)(34a6)2?(43a6)2等于

  A.a B.a2 C.a3 D.a4

  (4)把根式-25(a-b)-2改写成分数指数幂的形式为

  A. B.

  C. D.

  (5)化简的结果是

  A.6a B.-a C.-9a D.9a

  2、计算:(1) --17-2+ -3-1+(2-1)0=__________.

  (2)设5x=4,5y=2,则52x-y=__________.

  3、已知x+y=12,xy=9且x

  所以原式= =12-6-63=-33.

  拓展提升

  1、化简:。

  活动:学生观察式子特点,考虑x的指数之间的关系可以得到解题思路,应对原式进行因式分解,根据本题的特点,注意到:

  x-1= -13=;

  x+1= +13=;

  。

  构建解题思路教师适时启发提示。

  解:

  =

  =

  =

  = 。

  点拨:解这类题目,要注意运用以下公式,

  =a-b,

  =a± +b,

  =a±b.

  2、已知,探究下列各式的值的求法。

  (1)a+a-1;(2)a2+a-2;(3) 。

  解:(1)将,两边平方,得a+a-1+2=9,即a+a-1=7;

  (2)将a+a-1=7两边平方,得a2+a-2+2=49,即a2+ a-2=47;

  (3)由于,

  所以有=a+a-1+1=8.

  点拨:对“条件求值”问题,一定要弄清已知与未知的联系,然后采取“整体代换”或“求值后代换”两种方法求值。

  课堂小结

  活动:教师,本节课同学们有哪些收获?请把你的学习收获记录在你的笔记本上,同学们之间相互交流。同时教师用投影仪显示本堂课的知识要点:

  (1)分数指数幂的意义就是:正数的正分数指数幂的意义是=nam(a>0,m,n∈正整数集,n>1),正数的负分数指数幂的意义是= =1nam(a>0,m,n∈正整数集,n>1),零的正分数次幂等于零,零的负分数指数幂没有意义。

  (2)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数。

  (3)有理数指数幂的运算性质:对任意的有理数r,s,均有下面的运算性质:

  ①ar?as=ar+s(a>0,r,s∈Q),

  ②(ar)s=ars(a>0,r,s∈Q),

  ③(a?b)r=arbr(a>0,b>0,r∈Q)。

  (4)说明两点:

  ①分数指数幂的意义是一种规定,我们前面所举的例子只表明这种规定的合理性,其中没有推出关系。

  ②整数指数幂的运算性质对任意的有理数指数幂也同样适用。因而分数指数幂与根式可以互化,也可以利用=am来计算。

  作业

  课本习题2.1A组2,4.

  设计感想

  本节课是分数指数幂的意义的引出及应用,分数指数是指数概念的又一次扩充,要让学生反复理解分数指数幂的意义,教学中可以通过根式与分数指数幂的互化来巩固加深对这一概念的理解,用观察、归纳和类比的方法完成,由于是硬性的规定,没有合理的解释,因此多安排一些练习,强化训练,巩固知识,要辅助以信息技术的手段来完成大容量的课堂教学任务。

  第3课时

  作者:郑芳鸣

  导入新课

  思路1.同学们,既然我们把指数从正整数推广到整数,又从整数推广到正分数到负分数,这样指数就推广到有理数,那么它是否也和数的推广一样,到底有没有无理数指数幂呢?回顾数的扩充过程,自然数到整数,整数到分数(有理数),有理数到实数。并且知道,在有理数到实数的扩充过程中,增添的数是无理数。对无理数指数幂,也是这样扩充而来。既然如此,我们这节课的主要内容是:教师板书本堂课的课题〔指数与指数幂的运算(3)〕之无理数指数幂。

  思路2.同学们,在初中我们学习了函数的知识,对函数有了一个初步的了解,到了高中,我们又对函数的概念进行了进一步的学习,有了更深的理解,我们仅仅学了几种简单的函数,如一次函数、二次函数、正比例函数、反比例函数、三角函数等,这些远远不能满足我们的需要,随着科学的发展,社会的进步,我们还要学习许多函数,其中就有指数函数,为了学习指数函数的知识,我们必须学习实数指数幂的运算性质,为此,我们必须把指数幂从有理数指数幂扩充到实数指数幂,因此我们本节课学习:指数与指数幂的运算(3)之无理数指数幂,教师板书本节课的课题。

  推进新课

  新知探究

  提出问题

  (1)我们知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值?

  (2)多媒体显示以下图表:同学们从上面的两个表中,能发现什么样的规律?

  2的过剩近似值

  的近似值

  1.5 11.180 339 89

  1.42 9.829 635 328

  1.415 9.750 851 808

  1.414 3 9.739 872 62

  1.414 22 9.738 618 643

  1.414 214 9.738 524 602

  1.414 213 6 9.738 518 332

  1.414 213 57 9.738 517 862

  1.414 213 563 9.738 517 752

  … …

  的近似值

  2的不足近似值

  9.518 269 694 1.4

  9.672 669 973 1.41

  9.735 171 039 1.414

  9.738 305 174 1.414 2

  9.738 461 907 1.414 21

  9.738 508 928 1.414 213

  9.738 516 765 1.414 213 5

  9.738 517 705 1.414 213 56

  9.738 517 736 1.414 213 562

  … …

  (3)你能给上述思想起个名字吗?

  (4)一个正数的无理数次幂到底是一个什么性质的数呢?如,根据你学过的知识,能作出判断并合理地解释吗?

  (5)借助上面的结论你能说出一般性的结论吗?

  活动:教师引导,学生回忆,教师提问,学生回答,积极交流,及时评价学生,学生有困惑时加以解释,可用多媒体显示辅助内容:

  问题(1)从近似值的分类来考虑,一方面从大于2的方向,另一方面从小于2的方向。

  问题(2)对图表的观察一方面从上往下看,再一方面从左向右看,注意其关联。

  问题(3)上述方法实际上是无限接近,最后是逼近。

  问题(4)对问题给予大胆猜测,从数轴的观点加以解释。

  问题(5)在(3)(4)的基础上,推广到一般的情形,即由特殊到一般。

  讨论结果:(1)1.41,1.414,1.414 2,1.414 21,…这些数都小于2,称2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,这些数都大于2,称2的过剩近似值。

  (2)第一个表:从大于2的方向逼近2时,就从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向逼近。

  第二个表:从小于2的方向逼近2时,就从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向逼近。

  从另一角度来看这个问题,在数轴上近似地表示这些点,数轴上的数字表明一方面从51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向接近,而另一方面从51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向接近,可以说从两个方向无限地接近,即逼近,所以是一串有理数指数幂51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理数指数幂51.5,51.42,51.415,51.414 3,51.414 22,…,按上述变化规律变化的结果,事实上表示这些数的点从两个方向向表示的点靠近,但这个点一定在数轴上,由此我们可得到的结论是一定是一个实数,即51.40,α是无理数)是一个确定的实数。

  也就是说无理数可以作为指数,并且它的结果是一个实数,这样指数概念又一次得到推广,在数的扩充过程中,我们知道有理数和无理数统称为实数。我们规定了无理数指数幂的意义,知道它是一个确定的实数,结合前面的有理数指数幂,那么,指数幂就从有理数指数幂扩充到实数指数幂。

  提出问题

  (1)为什么在规定无理数指数幂的意义时,必须规定底数是正数?

  (2)无理数指数幂的运算法则是怎样的?是否与有理数指数幂的运算法则相通呢?

  (3)你能给出实数指数幂的运算法则吗?

  活动:教师组织学生互助合作,交流探讨,引导他们用反例说明问题,注意类比,归纳。

  对问题(1)回顾我们学习分数指数幂的意义时对底数的规定,举例说明。

  对问题(2)结合有理数指数幂的运算法则,既然无理数指数幂aα(a>0,α是无理数)是一个确定的实数,那么无理数指数幂的运算法则应当与有理数指数幂的运算法则类似,并且相通。

  对问题(3)有了有理数指数幂的运算法则和无理数指数幂的运算法则,实数的运算法则自然就得到了。

  讨论结果:(1)底数大于零的必要性,若a=-1,那么aα是+1还是-1就无法确定了,这样就造成混乱,规定了底数是正数后,无理数指数幂aα是一个确定的实数,就不会再造成混乱。

  (2)因为无理数指数幂是一个确定的实数,所以能进行指数的运算,也能进行幂的运算,有理数指数幂的运算性质,同样也适用于无理数指数幂。类比有理数指数幂的运算性质可以得到无理数指数幂的运算法则:

  ①ar?as=ar+s(a>0,r,s都是无理数)。

  ②(ar)s=ars(a>0,r,s都是无理数)。

  ③(a?b)r=arbr(a>0,b>0,r是无理数)。

  (3)指数幂扩充到实数后,指数幂的运算性质也就推广到了实数指数幂。

  实数指数幂的运算性质:

  对任意的实数r,s,均有下面的运算性质:

  ①ar?as=ar+s(a>0,r,s∈R)。

  ②(ar)s=ars(a>0,r,s∈R)。

  ③(a?b)r=arbr(a>0,b>0,r∈R)。

  应用示例

  例1利用函数计算器计算。(精确到0.001)

  (1)0.32.1;(2)3.14-3;(3);(4) 。

  活动:教师教会学生利用函数计算器计算,熟悉计算器的各键的功能,正确输入各类数,算出数值,对于(1),可先按底数0.3,再按xy键,再按幂指数2.1,最后按=,即可求得它的值;

  对于(2),先按底数3.14,再按xy键,再按负号-键,再按3,最后按=即可;

  对于(3),先按底数3.1,再按xy键,再按3÷4,最后按=即可;

  对于(4),这种无理指数幂,可先按底数3,其次按xy键,再按键,再按3,最后按=键。有时也可按2ndf或shift键,使用键上面的功能去运算。

  学生可以相互交流,挖掘计算器的用途。

  解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705.

  点评:熟练掌握用计算器计算幂的值的方法与步骤,感受现代技术的威力,逐步把自己融入现代信息社会;用四舍五入法求近似值,若保留小数点后n位,只需看第(n+1)位能否进位即可。

  例2求值或化简。

  (1)a-4b23ab2(a>0,b>0);

  (2)(a>0,b>0);

  (3)5-26+7-43-6-42.

  活动:学生观察,思考,所谓化简,即若能化为常数则化为常数,若不能化为常数则应使所化式子达到最简,对既有分数指数幂又有根式的式子,应该把根式统一化为分数指数幂的形式,便于运算,教师有针对性地提示引导,对(1)由里向外把根式化成分数指数幂,要紧扣分数指数幂的意义和运算性质,对(2)既有分数指数幂又有根式,应当统一起来,化为分数指数幂,对(3)有多重根号的式子,应先去根号,这里是二次根式,被开方数应凑完全平方,这样,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并对学生作及时的评价,注意总结解题的方法和规律。

  解:(1)a-4b23ab2= =3b46a11 。

  点评:根式的运算常常化成幂的运算进行,计算结果如没有特殊要求,就用根式的形式来表示。

高中数学教案怎么写模板(3)

    一、预习目标

  预习《平面向量应用举例》,体会向量是一种处理几何问题、物理问题等的工具,建立实际问题与向量的联系。

    二、预习内容

  阅读课本内容,整理例题,结合向量的运算,解决实际的几何问题、物理问题。另外,在思考一下几个问题:

  1、例1如果不用向量的方法,还有其他证明方法吗?

  2、利用向量方法解决平面几何问题的“三步曲”是什么?

  3、例3中,

  ⑴为何值时,|F1|最小,最小值是多少?

  ⑵|F1|能等于|G|吗?为什么?

    三、提出疑惑

  同学们,通过你的自主学习,你还有哪些疑惑,请把它填在下面的表格中疑惑点疑惑内容。

    课内探究学案

    一、学习内容

  1、运用向量的有关知识(向量加减法与向量数量积的运算法则等)解决平面几何和解析几何中直线或线段的平行、垂直、相等、夹角和距离等问题。

  2、运用向量的有关知识解决简单的物理问题。

    二、学习过程

  探究一:

  (1)向量运算与几何中的结论"若,则,且所在直线平行或重合"相类比,你有什么体会?

  (2)举出几个具有线性运算的几何实例。

  例1、证明:平行四边形两条对角线的平方和等于四条边的平方和。

  已知:平行四边形ABCD。

  求证:

  试用几何方法解决这个问题,利用向量的方法解决平面几何问题的“三步曲”?

  (1)建立平面几何与向量的联系,

  (2)通过向量运算,研究几何元素之间的关系,

  (3)把运算结果“翻译”成几何关系。

  例2,如图,平行四边形ABCD中,点E、F分别是AD、DC边的中点,BE、BF分别与AC交于R、T两点,你能发现AR、RT、TC之间的关系吗?

  探究二:两个人提一个旅行包,夹角越大越费力。在单杠上做引体向上运动,两臂夹角越小越省力。这些力的问题是怎么回事?

  例3,在日常生活中,你是否有这样的经验:两个人共提一个旅行包,夹角越大越费力;在单杠上作引体向上运动,两臂的夹角越小越省力。你能从数学的角度解释这种现象吗?

  请同学们结合刚才这个问题,思考下面的问题:

  ⑴为何值时,|F1|最小,最小值是多少?

  ⑵|F1|能等于|G|吗?为什么?

  例4如图,一条河的两岸平行,河的宽度m,一艘船从A处出发到河对岸。已知船的速度|v1|=10km/h,水流的速度|v2|=2km/h,问行驶航程最短时,所用的.时间是多少(精确到0。1min)?

  变式训练:两个粒子A、B从同一源发射出来,在某一时刻,它们的位移分别为,(1)写出此时粒子B相对粒子A的位移s;(2)计算s在方向上的投影。

    三、反思总结

  结合图形特点,选定正交基底,用坐标表示向量进行运算解决几何问题,体现几何问题。

  代数化的特点,数形结合的数学思想体现的淋漓尽致。向量作为桥梁工具使得运算简练标致,又体现了数学的美。有关长方形、正方形、直角三角形等平行、垂直等问题常用此法。

  本节主要研究了用向量知识解决平面几何问题和物理问题;掌握向量法和坐标法,以及用向量解决实际问题的步骤。

高中数学教案怎么写模板(4)

    一、教学目标

  1. 知识与技能:使学生正确理解组合的意义,掌握组合数的计算公式,并学会应用组合知识解决实际问题。

  2. 过程与方法:通过提出问题、创设情境、归纳概括等教学方法,培养学生分析问题、解决问题的能力。

  3. 情感态度价值观:激发学生学习数学的兴趣,培养学生严谨的科学态度和探索精神。

    二、教学重点与难点

  重点:组合的定义、组合数及组合数的.公式。

  难点:解组合的应用题,特别是如何将实际问题抽象为组合问题并求解。

    三、教学过程

  1. 导入新课

  提出问题:如“一条铁路线上有6个火车站,需准备多少种不同的普通客车票?有多少种不同票价的普通客车票?”引导学生思考并区分排列与组合问题。

  2. 新课讲授

  定义讲解:明确组合的定义,即从n个不同元素中取出m个元素并成一组(m≤n),叫做从n个不同元素中取出m个元素的一个组合。

  公式推导:通过分步计数原理推导出组合数的计算公式$C_n^m = \frac{n!}{m!(n-m)!}$。

  例题讲解:通过具体例题展示如何应用组合数的计算公式解决问题。

  3. 归纳概括

  总结组合的定义、性质及计算公式,强调组合与排列的区别。

  4. 巩固练习

  设计一系列练习题,包括基础题和综合题,让学生巩固所学知识并学会应用。

  5. 小结与作业

  总结本节课的重点内容,强调组合的意义及应用。

  布置课后作业,包括课本习题和思考题,以进一步巩固和拓展学生的知识。

高中数学教案怎么写模板(5)

    1.教学目标

  (1)知识目标:

  1.在平面直角坐标系中,探索并掌握圆的标准方程;

  2.会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程.

  (2)能力目标:

  1.进一步培养学生用解析法研究几何问题的能力;

  2.使学生加深对数形结合思想和待定系数法的理解;

  3.增强学生用数学的意识.

  (3)情感目标:培养学生主动探究知识、合作交流的意识,在体验数学美的过程中激发学生的学习兴趣.

    2.教学重点.难点

  (1)教学重点:圆的标准方程的求法及其应用.

  (2)教学难点:会根据不同的已知条件,利用待定系数法求圆的标准方程以及选择恰

  当的坐标系解决与圆有关的实际问题.

    3.教学过程

  (一)创设情境(启迪思维)

  问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2.7m,高为3m的货车能不能驶入这个隧道?

  [引导] 画图建系

  [学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)

  解:以某一截面半圆的圆心为坐标原点,半圆的直径ab所在直线为x轴,建立直角坐标系,则半圆的方程为x2 y2=16(y≥0)

  将x=2.7代入,得 .

  即在离隧道中心线2.7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。

  (二)深入探究(获得新知)

  问题二:1.根据问题一的探究能不能得到圆心在原点,半径为 的圆的方程?

  答:x2 y2=r2

  2.如果圆心在 ,半径为 时又如何呢?

  [学生活动] 探究圆的`方程。

  [教师预设] 方法一:坐标法

  如图,设m(x,y)是圆上任意一点,根据定义点m到圆心c的距离等于r,所以圆c就是集合p={m||mc|=r}

  由两点间的距离公式,点m适合的条件可表示为 ①

  把①式两边平方,得(x―a)2 (y―b)2=r2

  方法二:图形变换法

  方法三:向量平移法

  (三)应用举例(巩固提高)

  i.直接应用(内化新知)

  问题三:1.写出下列各圆的方程(课本p77练习1)

  (1)圆心在原点,半径为3;

  (2)圆心在 ,半径为 ;

  (3)经过点 ,圆心在点 .

  2.根据圆的方程写出圆心和半径

  (1) ; (2) .

  ii.灵活应用(提升能力)

  问题四:1.求以 为圆心,并且和直线 相切的圆的方程.

  [教师引导]由问题三知:圆心与半径可以确定圆.

  2.已知圆的方程为 ,求过圆上一点 的切线方程.

  [学生活动]探究方法

  [教师预设]

  方法一:待定系数法(利用几何关系求斜率-垂直)

  方法二:待定系数法(利用代数关系求斜率-联立方程)

  方法三:轨迹法(利用勾股定理列关系式) [多媒体课件演示]

  方法四:轨迹法(利用向量垂直列关系式)

  3.你能归纳出具有一般性的结论吗?

  已知圆的方程是 ,经过圆上一点 的切线的方程是: .

  iii.实际应用(回归自然)

  问题五:如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度ab=20m,拱高op=4m,在建造时每隔4m需用一个支柱支撑,求支柱 的长度(精确到0.01m).

  [多媒体课件演示创设实际问题情境]

  (四)反馈训练(形成方法)

  问题六:1.求以c(-1,-5)为圆心,并且和y轴相切的圆的方程.

  2.已知点a(-4,-5),b(6,-1),求以ab为直径的圆的方程.

  3.求圆x2 y2=13过点(-2,3)的切线方程.

  4.已知圆的方程为 ,求过点 的切线方程.

高中数学教案怎么写模板(6)

  第一章:空间几何体

  1.1.1柱、锥、台、球的结构特征

    一、教学目标

  1.知识与技能

  (1)通过实物操作,增强学生的直观感知。

  (2)能根据几何结构特征对空间物体进行分类。

  (3)会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

  (4)会表示有关于几何体以及柱、锥、台的分类。

  2.过程与方法

  (1)让学生通过直观感受空间物体,从实物中概括出柱、锥、台、球的几何结构特征。

  (2)让学生观察、讨论、归纳、概括所学的知识。

  3.情感态度与价值观

  (1)使学生感受空间几何体存在于现实生活周围,增强学生学习的积极性,同时提高学生的观察能力。

  (2)培养学生的空间想象能力和抽象括能力。

    二、教学重点、难点

  重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

  难点:柱、锥、台、球的结构特征的概括。

    三、教学用具

  (1)学法:观察、思考、交流、讨论、概括。

  (2)实物模型、投影仪

    四、教学思路

  (一)创设情景,揭示课题

  1.教师提出问题:在我们生活周围中有不少有特色的建筑物,你能举出一些例子吗?这些建筑的几何结构特征如何?引导学生回忆,举例和相互交流。教师对学生的活动及时给予评价。

  2.所举的建筑物基本上都是由这些几何体组合而成的,(展示具有柱、锥、台、球结构特征的空间物体),你能通过观察。根据某种标准对这些空间物体进行分类吗?这是我们所要学习的内容。

  (二)、研探新知

  1.引导学生观察物体、思考、交流、讨论,对物体进行分类,分辩棱柱、圆柱、棱锥。

  2.观察棱柱的几何物件以及投影出棱柱的图片,它们各自的特点是什么?它们的共同特点是什么?

  3.组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。

  (1)有两个面互相平行;

  (2)其余各面都是平行四边形;

  (3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

  4.教师与学生结合图形共同得出棱柱相关概念以及棱柱的表示。

  5.提出问题:各种这样的棱柱,主要有什么不同?可不可以根据不同对棱柱分类?请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

  6.以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

  7.让学生观察圆柱,并实物模型演示,如何得到圆柱,从而概括出圆标的概念以及相关的概念及圆柱的表示。

  8.引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

  9.教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

  10.现实世界中,我们看到的物体大多由具有柱、锥、台、球等几何结构特征的物体组合而成。请列举身边具有已学过的几何结构特征的物体,并说出组成这些物体的几何结构特征?它们由哪些基本几何体组成的?

  (三)质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

  1.有两个面互相平行,其余后面都是平行四边形的.几何体是不是棱柱(举反例说明,如图)

  2.棱柱的何两个平面都可以作为棱柱的底面吗?

  3.课本P8,习题1.1A组第1题。

  4.圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

  5.棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

    四、巩固深化

  练习:课本P7练习1、2(1)(2)

  课本P8习题1.1第2、3、4题

    五、归纳整理

  由学生整理学习了哪些内容

    六、布置作业

  课本P8练习题1.1B组第1题

  课外练习课本P8习题1.1B组第2题

    1.2.1空间几何体的三视图(1课时)

    一、教学目标

  1.知识与技能

  (1)掌握画三视图的基本技能

  (2)丰富学生的空间想象力

  2.过程与方法

  主要通过学生自己的亲身实践,动手作图,体会三视图的作用。

  3.情感态度与价值观

  (1)提高学生空间想象力

  (2)体会三视图的作用

    二、教学重点、难点

  重点:画出简单组合体的三视图

  难点:识别三视图所表示的空间几何体

    三、学法与教学用具

  1.学法:观察、动手实践、讨论、类比

  2.教学用具:实物模型、三角板

    四、教学思路

  (一)创设情景,揭开课题

  “横看成岭侧看成峰”,这说明从不同的角度看同一物体视觉的效果可能不同,要比较真实反映出物体,我们可从多角度观看物体,这堂课我们主要学习空间几何体的三视图。

  在初中,我们已经学习了正方体、长方体、圆柱、圆锥、球的三视图(正视图、侧视图、俯视图),你能画出空间几何体的三视图吗?

  (二)实践动手作图

  1.讲台上放球、长方体实物,要求学生画出它们的三视图,教师巡视,学生画完后可交流结果并讨论;

  2.教师引导学生用类比方法画出简单组合体的三视图

  (1)画出球放在长方体上的三视图

  (2)画出矿泉水瓶(实物放在桌面上)的三视图

  学生画完后,可把自己的作品展示并与同学交流,总结自己的作图心得。

  作三视图之前应当细心观察,认识了它的基本结构特征后,再动手作图。

  3.三视图与几何体之间的相互转化。

  (1)投影出示图片(课本P10,图1.2-3)

  请同学们思考图中的三视图表示的几何体是什么?

  (2)你能画出圆台的三视图吗?

  (3)三视图对于认识空间几何体有何作用?你有何体会?

  教师巡视指导,解答学生在学习中遇到的困难,然后让学生发表对上述问题的看法。

  4.请同学们画出1.2-4中其他物体表示的空间几何体的三视图,并与其他同学交流。

  (三)巩固练习

  课本P12练习1、2P18习题1.2A组1

  (四)归纳整理

  请学生回顾发表如何作好空间几何体的三视图

  (五)课外练习

  1.自己动手制作一个底面是正方形,侧面是全等的三角形的棱锥模型,并画出它的三视图。

  2.自己制作一个上、下底面都是相似的正三角形,侧面是全等的等腰梯形的棱台模型,并画出它的三视图。

    1.2.2空间几何体的直观图(1课时)

    一、教学目标

  1.知识与技能

  (1)掌握斜二测画法画水平设置的平面图形的直观图。

  (2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

  2.过程与方法

  学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

  3.情感态度与价值观

  (1)提高空间想象力与直观感受。

  (2)体会对比在学习中的作用。

  (3)感受几何作图在生产活动中的应用。

    二、教学重点、难点

  重点、难点:用斜二测画法画空间几何值的直观图。

    三、学法与教学用具

  1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

  2.教学用具:三角板、圆规

    四、教学思路

  (一)创设情景,揭示课题

  1.我们都学过画画,这节课我们画一物体:圆柱

  把实物圆柱放在讲台上让学生画。

  2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

  (二)研探新知

  1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的见解,教师及时给予点评。

  画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。

  练习反馈

  根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

  2.例2,用斜二测画法画水平放置的圆的直观图

  教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

  教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

  3.探求空间几何体的直观图的画法

  (1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。

  教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。

  (2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。

  4.平行投影与中心投影

  投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。

  5.巩固练习,课本P16练习1(1),2,3,4

  三、归纳整理

  学生回顾斜二测画法的关键与步骤

  四、作业

  1.书画作业,课本P17练习第5题

  2.课外思考课本P16,探究(1)(2)

高中数学教案怎么写模板(7)

    【教学目标】

  1.会用语言概述棱柱、棱锥、圆柱、圆锥、棱台、圆台、球的结构特征。

  2.能根据几何结构特征对空间物体进行分类。

  3.提高学生的观察能力;培养学生的空间想象能力和抽象括能力。

    【教学重难点】

  教学重点:让学生感受大量空间实物及模型、概括出柱、锥、台、球的结构特征。

  教学难点:柱、锥、台、球的结构特征的概括。

    【教学过程】

  1.情景导入

  教师提出问题,引导学生观察、举例和相互交流,提出本节课所学内容,出示课题。

  2.展示目标、检查预习

  3、合作探究、交流展示

  (1)引导学生观察棱柱的几何物体以及棱柱的图片,说出它们各自的特点是什么?它们的共同特点是什么?

  (2)组织学生分组讨论,每小组选出一名同学发表本组讨论结果。在此基础上得出棱柱的主要结构特征。

  1)有两个面互相平行;

  2)其余各面都是平行四边形;

  3)每相邻两上四边形的公共边互相平行。概括出棱柱的概念。

  (3)提出问题:请列举身边的棱柱并对它们进行分类

  (4)以类似的方法,让学生思考、讨论、概括出棱锥、棱台的结构特征,并得出相关的概念,分类以及表示。

  (5)让学生观察圆柱,并实物模型演示,概括出圆柱的概念以及相关的概念及圆柱的表示。

  (6)引导学生以类似的方法思考圆锥、圆台、球的结构特征,以及相关概念和表示,借助实物模型演示引导学生思考、讨论、概括。

  (7)教师指出圆柱和棱柱统称为柱体,棱台与圆台统称为台体,圆锥与棱锥统称为锥体。

  4.质疑答辩,排难解惑,发展思维,教师提出问题,让学生思考。

  (1)有两个面互相平行,其余后面都是平行四边形的几何体是不是棱柱(举反例说明)

  (2)棱柱的任何两个平面都可以作为棱柱的底面吗?

  (3)圆柱可以由矩形旋转得到,圆锥可以由直角三角形旋转得到,圆台可以由什么图形旋转得到?如何旋转?

  (4)棱台与棱柱、棱锥有什么关系?圆台与圆柱、圆锥呢?

  (5)绕直角三角形某一边的几何体一定是圆锥吗?

  5、典型例题

  例1:判断下列语句是否正确。

  ⑴有一个面是多边形,其余各面都是三角形的几何体是棱锥。

  ⑵有两个面互相平行,其余各面都是梯形,则此几何体是棱柱。

  答案 A B

  6、课堂检测:

  课本P8,习题1.1 A组第1题。

  7.归纳整理

  由学生整理学习了哪些内容

    【板书设计】

  一、柱、锥、台、球的结构

  二、例题

  例1

  变式1、2

    【作业布置】

  导学案课后练习与提高

  1.1.1柱、锥、台、球的结构特征

  课前预习学案

  一、预习目标:

  通过图形探究柱、锥、台、球的结构特征

  二、预习内容:

  阅读教材第2—6页内容,然后填空

  (1)多面体的概念: 叫多面体,

  叫多面体的面, 叫多面体的棱,

  叫多面体的.顶点。

  ① 棱柱:两个面 ,其余各面都是 ,并且每相邻两个四边形的公共边都 ,这些面围成的几何体叫作棱柱

  ②棱锥:有一个面是 ,其余各面都是 的三角形,这些面围成的几何体叫作棱锥

  ③棱台:用一个 棱锥底面的平面去截棱锥, ,叫作棱台。

  (2)旋转体的概念: 叫旋转体, 叫旋转体的轴。

  ①圆柱: 所围成的几何体叫做圆柱

  ②圆锥: 所围成的几何

  体叫做圆锥

  ③圆台: 的部分叫圆台

  ④球的定义

  思考:

  (1)试分析多面体与旋转体有何去别

  (2)球面球体有何去别

  (3)圆与球有何去别

  三、提出疑惑

  同学们,通过你的自主学习,你还有哪些疑惑,请把它填在表格中。

高中数学教案怎么写模板(8)

    教学目标

  (1)正确理解排列的意义。能利用树形图写出简单问题的所有排列;

  (2)了解排列和排列数的意义,能根据具体的问题,写出符合要求的排列;

  (3)掌握排列数公式,并能根据具体的问题,写出符合要求的排列数;

  (4)会分析与数字有关的排列问题,培养学生的抽象能力和逻辑思维能力;

  (5)通过对排列应用问题的学习,让学生通过对具体事例的观察、归纳中找出规律,得出结论,以培养学生严谨的学习态度。

    教学建议

  一、知识结构

  二、重点难点分析

  本小节的重点是排列的定义、排列数及排列数的公式,并运用这个公式去解决有关排列数的应用问题。难点是导出排列数的公式和解有关排列的应用题。突破重点、难点的关键是对加法原理和乘法原理的掌握和运用,并将这两个原理的基本思想方法贯穿在解决排列应用问题当中。

  从n个不同元素中任取m(m≤n)个元素,按照一定的顺序排成一列,称为从n个不同元素中任取m个元素的一个排列。因此,两个相同排列,当且仅当他们的元素完全相同,并且元素的排列顺序也完全相同。排列数是指从n个不同元素中任取m(m≤n)个元素的所有不同排列的种数,只要弄清相同排列、不同排列,才有可能计算相应的排列数。排列与排列数是两个概念,前者是具有m个元素的排列,后者是这种排列的不同种数。从集合的角度看,从n个元素的有限集中取出m个组成的有序集,相当于一个排列,而这种有序集的个数,就是相应的排列数。

  公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。要重点分析好的推导。

  排列的应用题是本节教材的难点,通过本节例题的分析,应注意培养学生解决应用问题的能力。

  在分析应用题的解法时,教材上先画出框图,然后分析逐次填入时的种数,这样解释比较直观,教学上要充分利用,要求学生作题时也应尽量采用。

  在教学排列应用题时,开始应要求学生写解法要有简要的文字说明,防止单纯的只写一个排列数,这样可以培养学生的分析问题的能力,在基本掌握之后,可以逐渐地不作这方面的要求。

  三、教法建议

  ①在讲解排列数的.概念时,要注意区分“排列数”与“一个排列”这两个概念。一个排列是指“从n个不同元素中,任取出m个元素,按照一定的顺序摆成一排”,它不是一个数,而是具体的一件事;排列数是指“从n个不同元素中取出m个元素的所有排列的个数”,它是一个数。例如,从3个元素a,b,c中每次取出2个元素,按照一定的顺序排成一排,有如下几种:

  ab,ac,ba,bc,ca,cb,

  其中每一种都叫一个排列,共有6种,而数字6就是排列数,符号表示排列数。

  ②排列的定义中包含两个基本内容,一是“取出元素”,二是“按一定顺序排列”。

  从定义知,只有当元素完全相同,并且元素排列的顺序也完全相同时,才是同一个排列,元素完全不同,或元素部分相同或元素完全相同而顺序不同的排列,都不是同一排列。叫不同排列。

  在定义中“一定顺序”就是说与位置有关,在实际问题中,要由具体问题的性质和条件来决定,这一点要特别注意,这也是与后面学习的组合的根本区别。

  在排列的定义中,如果有的书上叫选排列,如果,此时叫全排列。

  要特别注意,不加特殊说明,本章不研究重复排列问题。

  ③关于排列数公式的推导的教学。公式推导要注意紧扣乘法原理,借助框图的直视解释来讲解。课本上用的是不完全归纳法,先推导,…,再推广到,这样由特殊到一般,由具体到抽象的讲法,学生是不难理解的。

  导出公式后要分析这个公式的构成特点,以便帮助学生正确地记忆公式,防止学生在“n”、“m”比较复杂的时候把公式写错。这个公式的特点可见课本第229页的一段话:“其中,公式右边第一个因数是n,后面每个因数都比它前面一个因数少1,最后一个因数是,共m个因数相乘。”这实际是讲三个特点:第一个因数是什么?最后一个因数是什么?一共有多少个连续的自然数相乘。

  公式是在引出全排列数公式后,将排列数公式变形后得到的公式。对这个公式指出两点:

  (1)在一般情况下,要计算具体的排列数的值,常用前一个公式,而要对含有字母的排列数的式子进行变形或作有关的论证,要用到这个公式,教材中第230页例2就是用这个公式证明的问题;

  (2)为使这个公式在时也能成立,规定,如同时一样,是一种规定,因此,不能按阶乘数的原意作解释。

  ④建议应充分利用树形图对问题进行分析,这样比较直观,便于理解。

  ⑤学生在开始做排列应用题的作业时,应要求他们写出解法的简要说明,而不能只列出算式、得出答数,这样有利于学生得更加扎实。随着学生解题熟练程度的提高,可以逐步降低这种要求。

高中数学教案怎么写模板(9)

    教学目标

  1.进一步理解线性规划的概念;会解简单的线性规划问题;

  2.在运用建模和数形结合等数学思想方法分析、解决问题的过程中;提高解决问题的能力;

  3.进一步提高学生的合作意识和探究意识。

    教学重点:线性规划的概念及其解法

    教学难点

  代数问题几何化的过程

    教学方法:

  启发探究式

    教学手段

  运用多媒体技术

    教学过程:

  1.实际问题引入。

  问题一:小王和小李合租了一辆小轿车外出旅游.小王驾车平均速度为每小时70公里,平均耗油量为每小时6公升;小李驾车平均速度为每小时50公里,平均耗油量为每小时4公升.现知道油箱内油量为60公升,两人驾车时间累计不能超过12小时.问小王和小李分别驾车多少时间时,行驶路程最远?

  2.探究和讨论下列问题。

  (1)实际问题转化为一个怎样的数学问题?

  (2)满足不等式组①的条件的点构成的.区域如何表示?

  (3)关于x、y的一个表达式z=70x+50y的几何意义是什么?

  (4)z的几何意义是什么?

  (5)z的最大值如何确定?

  让学生达成以下共识:小王驾车时间x和小李驾车时间y受到时间(12小时)和油量(60公升)的限制,即

  x+y≤12

  6x+4y≤60 ①

  x≥0

  y≥0

  行驶路程可以表示成关于x、y的一个表达式:z=70x+50y 由数形结合可知:经过点B(6,6)的直线所对应的z最大.

  则zmax=6×70+6×50=720

  结论:小王和小李分别驾车6小时时,行驶路程最远为720公里.

  解题反思:

  问题解决过程中体现了那些重要的数学思想?

  3.线性规划的有关概念。

  什么是“线性规划问题”?涉及约束条件、线性约束条件、目标函数、线性目标函数、可行解、可行域和最优解等概念.

  4.进一步探究线性规划问题的解。

  问题二:若小王和小李驾车平均速度为每小时60公里和40公里,其它条件不变,问小王和小李分别驾车多少时间时,行驶路程最远?

  要求:请你写出约束条件、目标函数,作出可行域,求出最优解。

  问题三:如果把不等式组①中的两个“≤”改为“≥”,是否存在最优解?

  5.小结。

  (1)数学知识;(2)数学思想。

  6.作业。

  (1)阅读教材:P.60-63;

  (2)课后练习:教材P.65-2,3;

  (3)在自己生活中寻找一个简单的线性规划问题,写出约束条件,确定目标函数,作出可行域,并求出最优解。

高中数学教案怎么写模板(10)

  教学目标

  (1)使学生正确理解组合的意义,正确区分排列、组合问题;

  (2)使学生掌握组合数的计算公式;

  (3)通过学习组合知识,让学生掌握类比的学习方法,并提高学生分析问题和解决问题的能力;

  教学重点难点

  重点是组合的定义、组合数及组合数的公式;

  难点是解组合的应用题.

  教学过程设计

  (-)导入新课

  (教师活动)提出下列思考问题,打出字幕.

  [字幕]一条铁路线上有6个火车站,(1)需准备多少种不同的普通客车票?(2)有多少种不同票价的普通客车票?上面问题中,哪一问是排列问题?哪一问是组合问题?

  (学生活动)讨论并回答.

  答案提示:(1)排列;(2)组合.

  [评述]问题(1)是从6个火车站中任选两个,并按一定的顺序排列,要求出排法的种数,属于排列问题;(2)是从6个火车站中任选两个并成一组,两站无顺序关系,要求出不同的组数,属于组合问题.这节课着重研究组合问题.

  设计意图:组合与排列所研究的问题几乎是平行的上面设计的问题目的是从排列知识中发现并提出新的问题.

  (二)新课讲授

  [提出问题 创设情境]

  (教师活动)指导学生带着问题阅读课文.

  [字幕]1.排列的定义是什么?

  2.举例说明一个组合是什么?

  3.一个组合与一个排列有何区别?

  (学生活动)阅读回答.

  (教师活动)对照课文,逐一评析.

  设计意图:激活学生的思维,使其将所学的知识迁移过渡,并尽快适应新的环境.

  【归纳概括 建立新知】

  (教师活动)承接上述问题的回答,展示下面知识.

  [字幕]模型:从 个不同元素中取出 个元素并成一组,叫做从 个不同元素中取出 个元素的一个组合.如前面思考题:6个火车站中甲站→乙站和乙站→甲站是票价相同的车票,是从6个元素中取出2个元素的一个组合.

  组合数:从 个不同元素中取出 个元素的所有组合的个数,称之,用符号 表示,如从6个元素中取出2个元素的组合数为 .

  [评述]区分一个排列与一个组合的关键是:该问题是否与顺序有关,当取出元素后,若改变一下顺序,就得到一种新的取法,则是排列问题;若改变顺序,仍得原来的取法,就是组合问题.

  (学生活动)倾听、思索、记录.

  (教师活动)提出思考问题.

  [投影] 与 的关系如何?

  (师生活动)共同探讨.求从 个不同元素中取出 个元素的排列数 ,可分为以下两步:

  第1步,先求出从这 个不同元素中取出 个元素的组合数为 ;

  第2步,求每一个组合中 个元素的'全排列数为 .根据分步计数原理,得到

  [字幕]公式1:

  公式2:

  (学生活动)验算 ,即一条铁路上6个火车站有15种不同的票价的普通客车票.

  设计意图:本着以认识概念为起点,以问题为主线,以培养能力为核心的宗旨,逐步展示知识的形成过程,使学生思维层层被激活、逐渐深入到问题当中去.

  【例题示范 探求方法】

  (教师活动)打出字幕,给出示范,指导训练.

  [字幕]例1 列举从4个元素 中任取2个元素的所有组合.

  例2 计算:(1) ;(2) .

  (学生活动)板演、示范.

  (教师活动)讲评并指出用两种方法计算例2的第2小题.

  [字幕]例3 已知 ,求 的所有值.

  (学生活动)思考分析.

  解 首先,根据组合的定义,有

  ①

  其次,由原不等式转化为

  即

  解得 ②

  综合①、②,得 ,即

  [点评]这是组合数公式的应用,关键是公式的选择.

  设计意图:例题教学循序渐进,让学生巩固知识,强化公式的应用,从而培养学生的综合分析能力.

  【反馈练习 学会应用】

  (教师活动)给出练习,学生解答,教师点评.

  [课堂练习]课本P99练习第2,5,6题.

  [补充练习]

  [字幕]1.计算:

  2.已知 ,求 .

  (学生活动)板演、解答.

  设计意图:课堂教学体现以学生为本,让全体学生参与训练,深刻揭示排列数公式的结构、特征及应用.

  (三)小结

  (师生活动)共同小结.

  本节主要内容有

  1.组合概念.

  2.组合数计算的两个公式.

  (四)布置作业

  1.课本作业:习题10 3第1(1)、(4),3题.

  2.思考题:某学习小组有8个同学,从男生中选2人,女生中选1人参加数学、物理、化学三种学科竞赛,要求每科均有1人参加,共有180种不同的选法,那么该小组中,男、女同学各有多少人?

  3.研究性题:

  在 的 边上除顶点 外有 5个点,在 边上有 4个点,由这些点(包括 )能组成多少个四边形?能组成多少个三角形?

  (五)课后点评

  在学习了排列知识的基础上,本节课引进了组合概念,并推导出组合数公式,同时调控进行训练,从而培养学生分析问题、解决问题的能力.

高中数学教案怎么写模板(11)

  教学目标:

  (1)了解坐标法和解析几何的意义,了解解析几何的基本问题.

  (2)进一步理解曲线的方程和方程的曲线.

  (3)初步掌握求曲线方程的方法.

  (4)通过本节内容的教学,培养学生分析问题和转化的能力.

  教学重点、难点:求曲线的方程.

  教学用具:计算机.

  教学方法:启发引导法,讨论法.

  教学过程:

  【引入】

  1.提问:什么是曲线的方程和方程的曲线.

  学生思考并回答.教师强调.

  2.坐标法和解析几何的意义、基本问题.

  对于一个几何问题,在建立坐标系的基础上,用坐标表示点;用方程表示曲线,通过研究方程的性质间接地来研究曲线的性质,这一研究几何问题的方法称为坐标法,这门科学称为解析几何.解析几何的两大基本问题就是:

  (1)根据已知条件,求出表示平面曲线的方程.

  (2)通过方程,研究平面曲线的性质.

  事实上,在前边所学的直线方程的理论中也有这样两个基本问题.而且要先研究如何求出曲线方程,再研究如何用方程研究曲线.本节课就初步研究曲线方程的求法.

  【问题】

  如何根据已知条件,求出曲线的方程.

  【实例分析】

  例1:设、两点的坐标是、(3,7),求线段的垂直平分线的方程.

  首先由学生分析:根据直线方程的知识,运用点斜式即可解决.

  解法一:易求线段的中点坐标为(1,3),

  由斜率关系可求得l的斜率为

  于是有

  即l的方程为

  ①

  分析、引导:上述问题是我们早就学过的,用点斜式就可解决.可是,你们是否想过①恰好就是所求的吗?或者说①就是直线的方程?根据是什么,有证明吗?

  (通过教师引导,是学生意识到这是以前没有解决的问题,应该证明,证明的依据就是定义中的两条).

  证明:(1)曲线上的点的坐标都是这个方程的解.

  设是线段的垂直平分线上任意一点,则

  即

  将上式两边平方,整理得

  这说明点的坐标是方程的解.

  (2)以这个方程的解为坐标的点都是曲线上的点.

  设点的坐标是方程①的任意一解,则

  到、的距离分别为

  所以,即点在直线上.

  综合(1)、(2),①是所求直线的方程.

  至此,证明完毕.回顾上述内容我们会发现一个有趣的现象:在证明(1)曲线上的点的坐标都是这个方程的解中,设是线段的垂直平分线上任意一点,最后得到式子,如果去掉脚标,这不就是所求方程吗?可见,这个证明过程就表明一种求解过程,下面试试看:

  解法二:设是线段的垂直平分线上任意一点,也就是点属于集合

  由两点间的距离公式,点所适合的条件可表示为

  将上式两边平方,整理得

  果然成功,当然也不要忘了证明,即验证两条是否都满足.显然,求解过程就说明第一条是正确的(从这一点看,解法二也比解法一优越一些);至于第二条上边已证.

  这样我们就有两种求解方程的方法,而且解法二不借助直线方程的理论,又非常自然,还体现了曲线方程定义中点集与对应的思想.因此是个好方法.

  让我们用这个方法试解如下问题:

  例2:点与两条互相垂直的直线的距离的积是常数求点的轨迹方程.

  分析:这是一个纯粹的几何问题,连坐标系都没有.所以首先要建立坐标系,显然用已知中两条互相垂直的直线作坐标轴,建立直角坐标系.然后仿照例1中的解法进行求解.

  求解过程略.

  【概括总结】通过学生讨论,师生共同总结:

  分析上面两个例题的求解过程,我们总结一下求解曲线方程的大体步骤:

  首先应有坐标系;其次设曲线上任意一点;然后写出表示曲线的点集;再代入坐标;最后整理出方程,并证明或修正.说得更准确一点就是:

  (1)建立适当的坐标系,用有序实数对例如表示曲线上任意一点的坐标;

  (2)写出适合条件的点的集合

  ;

  (3)用坐标表示条件,列出方程;

  (4)化方程为最简形式;

  (5)证明以化简后的方程的解为坐标的点都是曲线上的点.

  一般情况下,求解过程已表明曲线上的点的坐标都是方程的解;如果求解过程中的转化都是等价的,那么逆推回去就说明以方程的'解为坐标的点都是曲线上的点.所以,通常情况下证明可省略,不过特殊情况要说明.

  上述五个步骤可简记为:建系设点;写出集合;列方程;化简;修正.

  下面再看一个问题:

  例3:已知一条曲线在轴的上方,它上面的每一点到点的距离减去它到轴的距离的差都是2,求这条曲线的方程.

  【动画演示】用几何画板演示曲线生成的过程和形状,在运动变化的过程中寻找关系.

  解:设点是曲线上任意一点,轴,垂足是(如图2),那么点属于集合

  由距离公式,点适合的条件可表示为

  ①

  将①式移项后再两边平方,得

  化简得

  由题意,曲线在轴的上方,所以,虽然原点的坐标(0,0)是这个方程的解,但不属于已知曲线,所以曲线的方程应为,它是关于轴对称的抛物线,但不包括抛物线的顶点,如图2中所示.

  【练习巩固】

  题目:在正三角形内有一动点,已知到三个顶点的距离分别为、 、,且有,求点轨迹方程.

  分析、略解:首先应建立坐标系,以正三角形一边所在的直线为一个坐标轴,这条边的垂直平分线为另一个轴,建立直角坐标系比较简单,如图3所示.设、的坐标为、,则的坐标为,的坐标为.

  根据条件,代入坐标可得

  化简得

  ①

  由于题目中要求点在三角形内,所以,在结合①式可进一步求出、的范围,最后曲线方程可表示为

  【小结】师生共同总结:

  (1)解析几何研究研究问题的方法是什么?

  (2)如何求曲线的方程?

  (3)请对求解曲线方程的五个步骤进行评价.各步骤的作用,哪步重要,哪步应注意什么?

  【作业】课本第72页练习1,2,3;

高中数学教案怎么写模板(12)

    一、教学内容分析

  向量作为工具在数学、物理以及实际生活中都有着广泛的应用。

  本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用。

    二、教学目标设计

  1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路。

  2、了解构造法在解题中的运用。

    三、教学重点及难点

  重点:平面向量知识在各个领域中应用。

  难点:向量的.构造。

    四、教学流程设计

    五、教学过程设计

  一、复习与回顾

  1、提问:下列哪些量是向量?

  (1)力

  (2)功

  (3)位移

  (4)力矩

  2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?

  [说明]复习数量积的有关知识。

  二、学习新课

  例1(书中例5)

  向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看

  例2(书中例3)

  证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立。

  证法(二)向量法

  [说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)

  例3(书中例4)

  [说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明。

  二、巩固练习

  1、如图,某人在静水中游泳,速度为xkm/h.

  (1)如果他径直游向河对岸,水的流速为4xkm/h,他实际沿什么方向前进?速度大小为多少?

  答案:沿北偏东方向前进,实际速度大小是8xkm/h.

  (2)他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?

  答案:朝北偏西方向前进,实际速度大小为xkm/h.

  三、课堂小结

  1、向量在物理、数学中有着广泛的应用。

  2、要学会从不同的角度去看一个数学问题,是数学知识有机联系。

  四、作业布置

  1、书面作业:课本P73,练习8.44

高中数学教案怎么写模板(13)

    一、教学目标

  1.知识与技能

  (1)掌握斜二测画法画水平设置的平面图形的直观图。

  (2)采用对比的方法了解在平行投影下画空间图形与在中心投影下画空间图形两种方法的各自特点。

  2.过程与方法

  学生通过观察和类比,利用斜二测画法画出空间几何体的直观图。

  3.情感态度与价值观

  (1)提高空间想象力与直观感受。

  (2)体会对比在学习中的作用。

  (3)感受几何作图在生产活动中的应用。

    二、教学重点、难点

  重点、难点:用斜二测画法画空间几何值的直观图。

    三、学法与教学用具

  1.学法:学生通过作图感受图形直观感,并自然采用斜二测画法画空间几何体的过程。

  2.教学用具:三角板、圆规

    四、教学思路

  (一)创设情景,揭示课题

  1.我们都学过画画,这节课我们画一物体:圆柱

  把实物圆柱放在讲台上让学生画。

  2.学生画完后展示自己的结果并与同学交流,比较谁画的效果更好,思考怎样才能画好物体的直观图呢?这是我们这节主要学习的内容。

  (二)研探新知

  1.例1,用斜二测画法画水平放置的正六边形的直观图,由学生阅读理解,并思考斜二测画法的关键步骤,学生发表自己的`见解,教师及时给予点评。

  画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可以归结为确定点的位置的画法。强调斜二测画法的步骤。

    练习反馈

  根据斜二测画法,画出水平放置的正五边形的直观图,让学生独立完成后,教师检查。

  2.例2,用斜二测画法画水平放置的圆的直观图

  教师引导学生与例1进行比较,与画水平放置的多边形的直观图一样,画水平放置的圆的直观图,也是要先画出一些有代表性的点,由于不能像多边那样直接以顶点为代表点,因此需要自己构造出一些点。

  教师组织学生思考、讨论和交流,如何构造出需要的一些点,与学生共同完成例2并详细板书画法。

  3.探求空间几何体的直观图的画法

  (1)例3,用斜二测画法画长、宽、高分别是4cm、3cm、2cm的长方体ABCD-A’B’C’D’的直观图。

  教师引导学生完成,要注意对每一步骤提出严格要求,让学生按部就班地画好每一步,不能敷衍了事。

  (2)投影出示几何体的三视图、课本P15图1.2-9,请说出三视图表示的几何体?并用斜二测画法画出它的直观图。教师组织学生思考,讨论和交流完成,教师巡视帮不懂的同学解疑,引导学生正确把握图形尺寸大小之间的关系。

  4.平行投影与中心投影

  投影出示课本P17图1.2-12,让学生观察比较概括在平行投影下画空间图形与在中心投影下画空间图形的各自特点。

  5.巩固练习,课本P16练习1(1),2,3,4

  三、归纳整理

  学生回顾斜二测画法的关键与步骤

  四、作业

  1.书画作业,课本P17练习第5题

  2.课外思考课本P16,探究(1)(2)

高中数学教案怎么写模板(14)

    一、教学内容分析

  圆锥曲线的定义反映了圆锥曲线的本质属性,它是无数次实践后的高度抽象,恰当地利用定义解题,许多时候能以简驭繁。因此,在学习了椭圆、双曲线、抛物线的定义及标准方程、几何性质后,再一次强调定义,学会利用圆锥曲线定义来熟练的解题”。

    二、学生学习情况分析

  我所任教班级的学生参与课堂教学活动的积极性强,思维活跃,但计算能力较差,推理能力较弱,使用数学语言的表达能力也略显不足。

    三、设计思想

  由于这部分知识较为抽象,如果离开感性认识,容易使学生陷入困境,降低学习热情。在教学时,借助多媒体动画,引导学生主动发现问题、解决问题,主动参与教学,在轻松愉快的环境中发现、获取新知,提高教学效率。

    四、教学目标

  1、深刻理解并熟练掌握圆锥曲线的定义,能灵活应用定义解决问题;熟练掌握焦点坐标、顶点坐标、焦距、离心率、准线方程、渐近线、焦半径等概念和求法;能结合平面几何的基本知识求解圆锥曲线的方程。

  2、通过对练习,强化对圆锥曲线定义的理解,提高分析、解决问题的能力;通过对问题的不断引申,精心设问,引导学生学习解题的一般方法。

  3、借助多媒体辅助教学,激发学习数学的兴趣。

    五、教学重点与难点:

  教学重点

  1、对圆锥曲线定义的理解

  2、利用圆锥曲线的定义求“最值”

  3、“定义法”求轨迹方程

  教学难点:

  巧用圆锥曲线定义解题

    六、教学过程设计

  【设计思路】

  (一)开门见山,提出问题

  一上课,我就直截了当地给出例题1:

  (1)已知A(-2,0),B(2,0)动点M满足|MA|+|MB|=2,则点M的轨迹是()。

  (A)椭圆(B)双曲线(C)线段(D)不存在

  (2)已知动点M(x,y)满足(x1)2(y2)2|3x4y|,则点M的轨迹是()。

  (A)椭圆(B)双曲线(C)抛物线(D)两条相交直线

  【设计意图】

  定义是揭示概念内涵的逻辑方法,熟悉不同概念的不同定义方式,是学习和研究数学的一个必备条件,而通过一个阶段的学习之后,学生们对圆锥曲线的定义已有了一定的认识,他们是否能真正掌握它们的本质,是我本节课首先要弄清楚的问题。

  为了加深学生对圆锥曲线定义理解,我以圆锥曲线的定义的运用为主线,精心准备了两道练习题。

  【学情预设】

  估计多数学生能够很快回答出正确答案,但是部分学生对于圆锥曲线的.定义可能并未真正理解,因此,在学生们回答后,我将要求学生接着说出:若想答案是其他选项的话,条件要怎么改?这对于已学完圆锥曲线这部分知识的学生来说,并不是什么难事。但问题(2)就可能让学生们费一番周折——如果有学生提出:可以利用变形来解决问题,那么我就可以循着他的思路,先对原等式做变形:(x1)2(y2)25

  这样,很快就能得出正确结果。如若不然,我将启发他们从等式两端的式子|3x4y|5入手,考虑通过适当的变形,转化为学生们熟知的两个距离公式。

  在对学生们的解答做出判断后,我将把问题引申为:该双曲线的中心坐标是,实轴长为,焦距为。以深化对概念的理解。

  (二)理解定义、解决问题

  例2:

  (1)已知动圆A过定圆B:x2y26x70的圆心,且与定圆C:xy6x910相内切,求△ABC面积的最大值。

  (2)在(1)的条件下,给定点P(-2,2),求|PA|

  【设计意图】

  运用圆锥曲线定义中的数量关系进行转化,使问题化归为几何中求最大(小)值的模式,是解析几何问题中的一种常见题型,也是学生们比较容易混淆的一类问题。例2的设置就是为了方便学生的辨析。

  【学情预设】

  根据以往的经验,多数学生看上去都能顺利解答本题,但真正能完整解答的可能并不多。事实上,解决本题的关键在于能准确写出点A的轨迹,有了练习题1的铺垫,这个问题对学生们来讲就显得颇为简单,因此面对例2(1),多数学生应该能准确给出解答,但是对于例2(2)这样相对比较陌生的问题,学生就无从下手。我提醒学生把3/5和离心率联系起来,这样就容易和第二定义联系起来,从而找到解决本题的突破口。

  (三)自主探究、深化认识

  如果时间允许,练习题将为学生们提供一次数学猜想、试验的机会。

  练习:

  设点Q是圆C:(x1)2225|AB|的最小值。3y225上动点,点A(1,0)是圆内一点,AQ的垂直平分线与CQ交于点M,求点M的轨迹方程。

  引申:若将点A移到圆C外,点M的轨迹会是什么?

  【设计意图】练习题设置的目的是为学生课外自主探究学习提供平台,当然,如果课堂上时间允许的话,

  可借助“多媒体课件”,引导学生对自己的结论进行验证。

  【知识链接】

  (一)圆锥曲线的定义

  1、圆锥曲线的第一定义

  2、圆锥曲线的统一定义

  (二)圆锥曲线定义的应用举例

  1、双曲线1的两焦点为F1、F2,P为曲线上一点,若P到左焦点F1的距离为12,求P到右准线的距离。

  2、|PF1||PF2|2P为等轴双曲线x2y2a2上一点,F1、F2为两焦点,O为双曲线的中心,求的|PO|取值范围。

  3、在抛物线y22px上有一点A(4,m),A点到抛物线的焦点F的距离为5,求抛物线的方程和点A的坐标。

  4、例题:

  (1)已知点F是椭圆1的右焦点,M是这椭圆上的动点,A(2,2)是一个定点,求|MA|+|MF|的最小值。

  (2)已知A(,3)为一定点,F为双曲线1的右焦点,M在双曲线右支上移动,当|AM||MF|最小时,求M点的坐标。

  (3)已知点P(-2,3)及焦点为F的抛物线y,在抛物线上求一点M,使|PM|+|FM|最小。

  5、已知A(4,0),B(2,2)是椭圆1内的点,M是椭圆上的动点,求|MA|+|MB|的最小值与最大值。

    七、教学反思

  1、本课将借助于,将使全体学生参与活动成为可能,使原来令人难以理解的抽象的数学理论变得形象,生动且通俗易懂,同时,运用“多媒体课件”辅助教学,节省了板演的时间,从而给学生留出更多的时间自悟、自练、自查,充分发挥学生的主体作用,这充分显示出“多媒体课件”与探究合作式教学理念的有机结合的教学优势。

  2、利用两个例题及其引申,通过一题多变,层层深入的探索,以及对猜测结果的检测研究,培养学生思维能力,使学生从学会一个问题的求解到掌握一类问题的解决方法,循序渐进的让学生把握这类问题的解法;将学生容易混淆的两类求“最值问题”并为一道题,方便学生进行比较、分析。虽然从表面上看,我这一堂课的教学容量不大,但事实上,学生们的思维运动量并不会小。

  总之,如何更好地选择符合学生具体情况,满足教学目标的例题与练习、灵活把握课堂教学节奏仍是我今后工作中的一个重要研究课题,而要能真正进行素质教育,培养学生的创新意识,自己首先必须更新观念——在教学中适度使用多媒体技术,让学生有参与教学实践的机会,能够使学生在学习新知识的同时,激发起求知的欲望,在寻求解决问题的办法的过程中获得自信和成功的体验,于不知不觉中改善了他们的思维品质,提高了数学思维能力。

高中数学教案怎么写模板(15)

  作为年轻的教师,我们有理想有激情有闯劲,但我们缺乏经验,还存在很多不足。比如,我们的教学理念还有待更新、业务水平还有待提高,教学经验有待丰富、业务知识有待拓宽?总之,与老教师相比,我们还有很大的差距。我们迫切需要老教师的指导和帮助,希望在老教师的指导和帮助下尽快成长。学校“师徒结对”活动的适时举行,犹如雪中送炭给了我们希望和信心,为我们开启了一扇通往成功的大门。

  很荣幸我能成为李凤姊老师的徒弟,我的师傅李老师是在教坛上默默耕耘了多年的老教师,她积累了丰富的教学经验,拥有精湛的教学艺术,并形成了自己独特、鲜明的教学风格。为了使这次的结对有成效,我们一起制定如下计划:

  (一)学习目标:

  1、学习师傅那先进的教育教学理念。

  2、学习师傅思考教育教学问题,有效地提高教学效率和学生成绩。

  3、学习师傅如何积累案例、论文素材。

  (二)学习内容:

  1、每个星期邀请师傅来听一节我的课。课后主动找师傅交流,请师傅指出课堂中暴露出的不足,写下反思,梳理以完善自己的教育教学理念和教学技巧,及时在以后的'教学实践中改善。

  2、每个星期观摩师傅的一节课。课前研究师傅所教课的那一课,自己思考该如何安排教学,本着谦虚学习的心态,聆听师傅的课堂。课后和师傅交流自己的思考,多多提问,才能进步。

  3、邀请师傅指点备课,每学期开设一节校内公开课。

  4、经常和师傅沟通,探讨在教育教学上的疑惑和想法。

  5、平日里遇到什么教育教学当中的问题无法解决,主动和师傅交流。

  在次学习期间有如下的自我期望:

  1、通过师徒结对,拜师学艺,努力提高课堂教学水平,不断增强教书育人的能力。

  2、通过师徒结对活动,切实提高职业道德修养、教育教学理论素质、教育教学组织能力和教育教学研究水平;

  3、积极参与教育教学实践研究,力争期间写一篇论文或案例,并积极投稿;很多优秀教师经常说到反思是教育教学过程中很重要的因素,它可以使教育教学有很大的收获,可以使我在教育教学中进步的更快。因此,本学期积极参与每一次的研讨活动,多和同事进行讨论评价,从而获得广泛而深入的评价反思信息,找出改进教学效果的方法和提高教学技能的对策。总之,在以后的工作中要不断地耐心细致的向有经验的教师学习,加强自己的师德修养,要努力钻研业务,敬业爱生,为人师表,争取做一位优秀的教师。

高中数学教案怎么写模板(16)

  公司组织的师徒结对活动是岗位大练兵活动的一项重要内容,通过“一帮一”互相学习、共同进步的形式,充分发挥老师傅“传帮带”的作用,以此提高年轻员工的工作能力。在活动中,我有幸与xx师傅结为师徒,成为她的徒弟。司师傅对工作认真的态度,扎实的专业知识,丰富的实践经验,让我受益匪浅。

  为了教好我这个徒弟,师徒结对后,司师傅为我制定了学习计划,分期分重点对学习内容做出安排,把多年来积累的经验无私地传授给我。

  第一阶段;理论学习。作为一名年轻的机泵运行工,司师傅告诉我,只有不断学习水泵与电气方面的专业知识,才能以正确的思想和理论指导自己的实际工作。司师傅给了我一本《机泵运行工》,让我从最基本的离心泵的构造开始学习,逐渐过渡到及泵的运行要求、保养维护,以及变压器的.相关知识。在我自学的同时,司师傅每每见到我,都会问起书上是否有哪些看不懂的地方,得知我的问题所在后,耐心细致地为我讲解,直到我彻底明白。

  第二阶段;理论与实践相结合。泵房工作,重在实践。书本上所提到的只是理论知识。正所谓师傅领进门,修行靠个人。一个人的成长,一个人的进步,师傅所起的作用就是一个引导的作用,而真正的修为,则在个人的理解与实践当中。通过几个月的学习与实践,我对高低压线路有了进一步的了解,能够独自进行日常的线路倒闸工作;

  能处理机泵运行中可能遇到的突发性事件;掌握了如何添加水泵的盘根和机油。7月5日下午,我在巡视泵方时,发现5号车发出异常的声响,想到前两天刚学习的故障排查,我逐一对5号车的各部件进行检查,最终发现车的轴承严重磨损,于是抓紧向厂里汇报,经更换维修,5号车恢复正常使用。

  第三阶段:总结测评。师傅定时对我学习的内容进行检查和考核,并让我在她的面前进行实际的操作。对我的学习结果进行总结和评定,在她指定的学习计划本中随时记录,认真填写意见,不断完善我的学习内容。

  师徒结对就像一条无形的纽带联结在师徒之间,让年轻员工和老师傅增加了相互交流的机会,意义重大。

  第一、师徒结对能使青年职工尽快熟悉业务,缩短成长的时间,充分利用了现有资源,按需因材施教,很大程度上节约了职工的培训成本;

  第二、师徒结对在师徒之间形成了相互学习,相互促进的氛围。青年职工在工作中得到了磨练,老师傅得到了减负,形成了老中青的层次配对,有力促进了水源各方面工作的开展;

  第三、师徒结对是一项旨在发现青年人才,锻炼青年人才,培养青年人才,造就青年人才的重大工程。它充分发挥了人才效应,增强了企业发展的后劲,是企业持续稳定健康发展的动力。

  “雄关漫道真如铁,而今迈步从头越”,师徒结对活动已接近尾声,但活到老学到老。对每个人来说,每一天的工作任务都是一个新的开始,一个新的学习过程。感谢公司为我们提供这样的机会,感谢厂领导对这项活动的重视、对我们年轻人的培养,特别感谢我最敬爱的司师傅。有了她的言传身教,外加自身的不懈努力,我相信我一定能成为一名优秀的机泵运行工,继承和发扬供水人爱岗敬业、无私奉献的职业精神。

高中数学教案怎么写模板(17)

  师傅带徒弟看房是在房地产市场中较为常见的现象,师傅们通常会将自己的经验和知识传授给徒弟,让他们在实践中学习更多的买房知识。作为徒弟,我们也有幸被师傅带着看房,从中领悟到了许多不同的看房技巧和购房经验,这些经验为我们今后的购房打下了坚实的基础。

  师傅带徒弟看房不仅可以帮助徒弟们更好地学习买房的知识和技能,还可以让徒弟们更好地理解房地产市场的本质。师傅们通常拥有多年的买房经验,而徒弟们则处于实践阶段,两者的结合产生了神奇的化学反应。师傅们可以用他们成功和失败的案例来传授经验,这对于徒弟们来说是无价之宝。

  师傅带徒弟看房的过程中,徒弟们需要注意的事项非常多,包括房屋的结构、环境、居住条件等方面。师傅们常常会指导徒弟们如何分析房屋的优点和缺点,帮助徒弟们更准确地找到满意的房子。同时,师傅还会教给徒弟们如何和房屋中介谈判,如何降低成本等等。

  从师傅带徒弟看房的过程中,我们受益匪浅。我们不仅学到了看房技巧和买房策略,还感受到了师傅们所传递的对于房地产的热爱和对于人生的积极态度。在师傅的`悉心指导下,我们更有底气和自信去把握买房机会,找到自己真正需要的房屋。

  师傅带徒弟看房是一个非常有意义的过程,它不仅可以让徒弟们学到更多的买房知识,还可以加深师生之间的感情,让我们的生活更加充实和有意义。因此,我们应该珍惜这样的机会,好好学习,努力实践,成为有经验、有智慧、有目标的房产投资者。

高中数学教案怎么写模板(18)

  1. 该生能以校规班规严格要求自己。有较强的集体荣誉感,学习态度认真,能吃苦,肯下功夫,成绩稳定。生活艰苦朴素,待人热情大方,是个基础扎实,品德兼优的好学生。

  2. 该生能严格遵守学校的规章制度。尊敬师长,团结同学。热爱集体,积极配合其他同学搞好班务工作,劳动积极肯干。学习刻苦认真,勤学好问,学习成绩稳定,学风和工作作风都较为踏实,坚持出满勤,并能积极参加社会实践和文体活动,劳动积极。是一位发展全面的好学生。

  3. 你是同学拥护、老师信任的班委,乖巧懂事、伶俐开朗、自信大方、乐观合群,是同学们学习的榜样。你爱护集体荣誉,有很强的工作能力,总是及时协助老师完成班务工作,是老师的得力帮手。你心性坦荡,个性鲜明,能大胆说出自己的想法,难能可贵。而你在运动场上的爆发力更让老师同学们惊叹!潜力深厚,希望在高中时期能逐渐发掘出来!

  4. 你是个做事小心翼翼,感情细腻丰富的女孩,每次看你认真的样子老师都很感动。你也是幸运的,周边有很多人都在关爱着你,所以,对他们,尤其是父母,记得不要太莽撞,不要太任性,要学着体谅,学着换位思考,学着懂事。另外,今后要多运动、多锻炼,有健康才能成就美好未来!

  5. 你坚强勇敢、乐观大方的性格让老师非常欣赏。学习上始终保持着上进好学的决心和韧性,生活中始终能做到豁达开朗,还有着良好的审美和绘画的专长,令人钦佩!以入世的态度做事,以出世的态度做人,这是我送你的一句话,希望你保持好心态,迎接新的学习生活。

  6. 最有希望得成功者,并不是才干出众的人,而是那些最善于利用时机去努力开创的人。你是很有才华的孩子,老师希望你能把握好机会,求得上进。你聪明,但也有着许多人共同的毛病——粗心大意和缺乏毅力,若能集中精力持之以恒,坚定目标致力于学习,定能大限度地发挥你的聪明才智!

  7. 该生遵纪守法,积极参加社会实践和文体活动,集体观念强,劳动积极肯干。是一位诚实守信,思想上进,尊敬老师,团结同学,热心助人,积极参加班集体活动,有体育特长,学习认真,具有较好综合素质的优秀学生。

  8. 你聪颖活泼,浑身洋溢青春气息。你爱好广泛,善钻精思,具备一定能力,潜质无限。但是在有些时候,在面临一些问题的时候,你总表现得太过紧张,其实,征服畏惧、建立自信的最快最确实的方法,就是大胆地去做你认为害怕的事,直到你获得成功的经验。继续努力!

  9. 你是对3班这个集体的成长贡献很大的孩子,是老师的得力帮手。你干练沉稳,坚强隐忍,能从大局出发考虑问题,在很多时候能独当一面。你独立能力强,能够吃苦,但在进入高中的学习上却显得有些吃力。其实你还有很深的潜力尚未挖掘,找对方法,好好加油,世上没有绝望的处境,只有对处境绝望的人,请乐观一点,踏实地走好接下来的每一步!

  10. 你是个能独立、有主见的女孩,有自己的想法,有一定的决断力。但是独立不代表乖张,有想法不代表恣意妄为。令人高兴的是,你在这点上做的还是不错的。晟君,老师希望你能一如既往地关注于学习而不懈怠,能坚持怀揣着平和感恩的心态简单快乐地生活。

  11. 你给我的第一印象是有些沉默,其实和朋友在一起时还是很有自己想法的对吧?你看,你布置的新年教室多么出彩!请继续秀出真实而精彩的你!这半个学期的学习有点力不从心,请保持谨慎和细心,保持好的学习习惯,及时弥补所缺漏的环节,大步向前进!

  12. 该生认真遵守学校的规章制度,积极参加社会实践和文体活动,集体观念强,劳动积极肯干。尊敬师长,团结同学。学习态度认真,能吃苦,肯下功夫,成绩稳定上升。是有理想有抱负,基础扎实,心理素质过硬、全面发展的优秀学生。

  13. 你是一个真诚待人、温柔可爱的女生。也许是因为你有些不紧不慢的性格,所以在学习上有时候行动力不够坚决,造成了学习成绩的不稳定。请多利用假期时间好好补缺补漏,向上的姿态才是最重要的!

  14. 老师同学们都在说你是个很有责任心和上进心的孩子,在班级需要的时候,你承担了劳动委员的重任,经常最后一个离开,就为了班级能有个整洁的环境。老师很感谢你!而更可贵的是,你懂得安排自己的时间,在工作的空隙抓紧时间做作业。希望下学期你的学习成绩也能随你的毅力和执着步步攀升,加油,羽腾!

  15. 其实你拥有你自己都不确知的才华,从你的文字中可以读出这样的信息:你时常沉醉在自己的小世界中,做自己喜欢做的事情。老师希望你能敞开心扉,多与旁人交流你快乐的体验和想法,不要吝啬展示自己!还有,成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。请务必抓紧每寸光阴,努力学习!

  16. 你知道吗?在世界上那些最容易的事情中,拖延时间是最不费力的。而学习却是艰辛的劳动过程。表面安静的你其实心里有着自己的想法和烦忧。于是在不经意间,精力被不自觉地转移到一些琐事上,却总无法完全集中心智于学业。也许你也已经意识到,也有了些许进步,那么请千万记住要持之以恒,要付出比别人更多倍的努力!

  17. 你是班级的数学科代表,老师很高兴选择你担任这个职务,不仅能促进自己的进步,而且也展现了你负责工作的一面。但是学习是要和工作一样,需要一丝不苟的态度,包括上课的听讲是否及时而有效,包括功课的完成是否严谨而认真。下学期,愿看到一个更加全神贯注更加专心致志的你!

  18. 我一直难忘在运动会上你担任前导牌的样子,为班级添光增彩了不少!你有着绘画的特长,是个善良、真诚的女孩,有着细腻丰富的内心,也许只需一点鼓励,你便会勇敢走下去,希望能在平时多听见你爽朗的笑声!

  19. 可爱、热情、谨小慎微,这都是你的代名词。你略为腼腆的微笑让人印象深刻。老师一直认为你是能够认真仔细地作好每一件事情、成就每一个细节的,因此,希望你能珍惜时间,提高效率,在学习上狠狠加油!

  20. 其实,任何事都是有重量的,那么,就看你把它变成压力还是重力了。在这个方面,我很高兴地看到你做的很好,你学习自觉,成绩便是努力的证明。老师安排你做物理科代表就是希望能多培养你的责任意识、大局意识和管理能力,希望以后在这方面能看到你更加出色的表现!

  21. 你是个可爱善良,懂事乖巧的女孩。作为语文科代表,兢兢业业,一丝不苟。你对人也是特别真诚热情,偶尔透露出的忧郁是旁人不易察觉的。但是你知道,成长就是破蛹成蝶的过程,高中是人生的重要阶段,勇敢地迈好每一步吧,享受成长带来的所有痛苦和快乐!

  22. 你很有能力,也很潜力,但欠缺的却是耐力和毅力。君子厚积而薄发,希望你能振作精神,跟上进度,迎头赶上,期待你获得更大的进步!

  23. 你曾经和我说过你的理想,但你对理想的憧憬和你所付出的努力程度却总是难成正比。若现在你觉得有障碍挡在前行之路上,那就说明你还没有把目标看的足够清楚。宁在事前心力交瘁的努力,事后悠然自得;也不要在事前悠然自得,而在临事时无法适从。你现在欠缺的`就是对自己发狠奋进的恒心,柏宇,“要想人前显贵,必定人后受罪”,成功要靠实践去争取,而不是光靠几句好听的决心话!

  24. 你乖巧大方,组织能力一流,但在学习上总显得有些力不从心。快马加鞭迎头赶上固然是必需,但也别太心急,要知道,欲速则不达,只要踏实努力,不懂就问,采用适合自己的学习方法,就会看到进步。也许刚开始的时候进步很小,小到你看不见,但是不要灰心,万事开头难!将事前的忧虑,换为事前的思考和计划,彻底放松,加强锻炼,养足精神再迎战!你能做到的,蔡炜,加油!

  25. 该生能遵守校纪班规,尊敬师长,能与同学和睦相处,勤学好问,有较强的独立钻研能力,分析问题比较深入、全面,在某些问题上有独特的见解,学习成绩在班上一直能保持前茅,乐于助人,能帮助学习有困难的同学。

  26. 不论在体育场还是教室里,看到你神采奕奕的样子,总让人联想到“英姿飒爽”这四个字。这确是一个高中生应该有的精神面貌。你做事认真,顾全大局,真的非常难得。希望能保持这样良好的状态,继续前进!也希望能够多和老师同学交流,多提些对班集体建设的好建议!

  27. 该生能以校规班规严格要求自己,积极参加社会实践和文体活动。尊敬师长,团结同学。集体观念强,劳动积极肯干。积极参加各种集体活动和社会实践活动。学习目的明确,刻苦认真,成绩稳定,是一个有理想、有抱负,基础扎实,心理素质过硬,全面发展的优秀学生。

  28. 我很高兴看到你是个有上进心,有责任感,能够让家人、师长宽慰的孩子。有努力就有回报,你下半学期的表现不就证明了这一点吗?进步是随着时间节节上升的,不要太过急躁,要知道,若你不给自己设限,则人生中就没有限制你发挥的藩篱。新学期要重整旗鼓,再接再励!

  29. ××× 独立性较强,对自己的能力也有准确的定位。建议今后学习上要养成勤思爱问的习惯,不能做井底之蛙,满足于现状,要充分利用他人的智慧,最后达到“好风凭借力,送我上青云”的目的。

  30. ××× 每天在教室,都能看到你埋头苦读的身影,可见读书的态度很端正;而你每一次考试的成绩虽然不拔尖,却是在稳步前进,可见读书的效率还不错。请继续保持这种虚心求学、稳步前进的态势,相信一年半以后的高考,你必将崭露头角,脱颖而出。

高中数学教案怎么写模板(19)

  【课题名称】

  《等差数列》的导入

  【授课年级】

  高中二年级

  【教学重点】

  理解等差数列的概念,能够运用等差数列的定义判断一个数列是否为等差数列。

  【教学难点】

  等差数列的性质、等差数列“等差”特点的理解,

  【教具准备】多媒体课件、投影仪

  【三维目标】

  ㈠知识目标:

  了解公差的概念,明确一个等差数列的限定条件,能根据定义判断一个等差数列是否是一个等差数列;

  ㈡能力目标:

  通过寻找等差数列的共同特征,培养学生的观察力以及归纳推理的能力;

  ㈢情感目标:

  通过对等差数列概念的归纳概括,培养学生的观察、分析资料的能力。

  【教学过程】

  导入新课

  师:上两节课我们已经学习了数列的定义以及给出表示数列的几种方法—列举法、通项法,递推公式、图像法。这些方法分别从不同的角度反映了数列的特点。下面我们观察以下的几个数列的例子:

  (1)我们经常这样数数,从0开始,每个5个数可以得到数列:0,5,10,15,20,()

  (2)2000年,在澳大利亚悉尼举行的奥运会上,女子举重被正式列为比赛项目,该项目工设置了7个级别,其中较轻的.4个级别体重组成的数列(单位:kg)为48,53,58,63,()试问第五个级别体重多少?

  (3)为了保证优质鱼类有良好的生活环境,水库管理员定期放水清库以清除水库中的杂鱼。如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m。即可得到一个数列:18,15.5,13,10.5,8,(),则第六个数应为多少?

  (4)10072,10144,10216,(),10360

  请同学们回答以上的四个问题

  生:第一个数列的第6项为25,第二个数列的第5个数为68,第三个数列的第6个数为5.5,第四个数列的第4个数为10288。

  师:我来问一下,你是依据什么得到了这几个数的呢?请以第二个数列为例说明一下。

  生:第二个数列的后一项总比前一项多5,依据这个规律我就得到了这个数列的第5个数为68.

  师:说的很好!同学们再仔细地观察一下以上的四个数列,看看以上的四个数列是否有什么共同特征?请注意,是共同特征。

  生1:相邻的两项的差都等于同一个常数。

  师:很好!那作差是否有顺序?是否可以颠倒?

  生2:作差的顺序是后项减去前项,不能颠倒!

  师:正如生1的总结,这四个数列有共同的特征:从第二项起,每一项与它的前一项的差都等于同一个常数(即等差)。我们叫这样的数列为等差数列。这就是我们这节课要研究的内容。

  推进新课

  等差数列的定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数就叫做等差数列的公差,公差常用字母d表示。从刚才的分析,同学们应该注意公差d一定是由后项减前项。

  师:有哪个同学知道定义中的关键字是什么?

  生2:“从第二项起”和“同一个常数”

高中数学教案怎么写模板(20)

  教学准备

  教学目标

  1.数列求和的综合应用

  教学重难点

  2.数列求和的综合应用

  教学过程

  典例分析

  3.数列{an}的前n项和Sn=n2-7n-8,

  (1)求{an}的通项公式

  (2)求{|an|}的前n项和Tn

  4.等差数列{an}的公差为,S100=145,则a1+a3 + a5 + …+a99=

  5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的'等差数列,则|m-n|=

  6.数列{an}是等差数列,且a1=2,a1+a2+a3=12

  (1)求{an}的通项公式

  (2)令bn=anxn ,求数列{bn}前n项和公式

  7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数

  8.在等差数列{an}中,a1=20,前n项和为Sn,且S10= S15,求当n为何值时,Sn有最大值,并求出它的最大值

  .已知数列{an},an∈N,Sn= (an+2)2

  (1)求证{an}是等差数列

  (2)若bn= an-30 ,求数列{bn}前n项的最小值

  0.已知f(x)=x2 -2(n+1)x+ n2+5n-7 (n∈N)

  (1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列

  (2设f(x)的图象的顶点到x轴的距离构成数列{dn},求数列{dn}的前n项和sn.

  11 .购买一件售价为5000元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)

  12 .某商品在最近100天内的价格f(t)与时间t的

  函数关系式是f(t)=

  销售量g(t)与时间t的函数关系是

  g(t)= -t/3 +109/3 (0≤t≤100)

  求这种商品的日销售额的最大值

  注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的最大值,应分别求出函数在各段中的最大值,通过比较,确定最大值

高中数学教案怎么写模板(21)

    教学目标

  1、知识与技能:

  函数是描述客观世界变化规律的重要数学模型.高中阶段不仅把函数看成变量之间的依

  赖关系,同时还用集合与对应的语言刻画函数,高中阶段更注重函数模型化的思想与意识.

  2、过程与方法:

  (1)通过实例,进一步体会函数是描述变量之间的依赖关系的重要数学模型,在此基础上学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;

  (2)了解构成函数的要素;

  (3)会求一些简单函数的定义域和值域;

  (4)能够正确使用“区间”的符号表示函数的定义域;

  3、情感态度与价值观,使学生感受到学习函数的必要性和重要性,激发学习的积极性.

    教学重点/难点

  重点:理解函数的模型化思想,用集合与对应的语言来刻画函数;

  难点:符号“y=f(x)”的含义,函数定义域和值域的区间表示;

    教学用具

  多媒体

  标签

  函数及其表示

    教学过程

  (一)创设情景,揭示课题

  1、复习初中所学函数的概念,强调函数的模型化思想;

  2、阅读课本引例,体会函数是描述客观事物变化规律的数学模型的思想:

  (1)炮弹的射高与时间的变化关系问题;

  (2)南极臭氧空洞面积与时间的变化关系问题;

  (3)“八五”计划以来我国城镇居民的恩格尔系数与时间的变化关系问题.

  3、分析、归纳以上三个实例,它们有什么共同点;

  4、引导学生应用集合与对应的语言描述各个实例中两个变量间的依赖关系;

  5、根据初中所学函数的概念,判断各个实例中的两个变量间的关系是否是函数关系.

  (二)研探新知

  1、函数的有关概念

  (1)函数的概念:

  设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数(function).

  记作:y=f(x),x∈A.

  其中,x叫做自变量,x的取值范围A叫做函数的定义域(domain);与x的值相对应的y值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域(range).

  注意:

  ①“y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;

  ②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x.

  (2)构成函数的三要素是什么?

  定义域、对应关系和值域

  (3)区间的概念

  ①区间的'分类:开区间、闭区间、半开半闭区间;

  ②无穷区间;

  ③区间的数轴表示.

  (4)初中学过哪些函数?它们的定义域、值域、对应法则分别是什么?

  通过三个已知的函数:y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比较描述性定义和集合,与对应语言刻画的定义,谈谈体会.

  师:归纳总结

  (三)质疑答辩,排难解惑,发展思维。

  1、如何求函数的定义域

  例1:已知函数f(x)=+

  (1)求函数的定义域;

  (2)求f(-3),f()的值;

  (3)当a>0时,求f(a),f(a-1)的值.

  分析:函数的定义域通常由问题的实际背景确定,如前所述的三个实例.如果只给出解析式y=f(x),而没有指明它的定义域,那么函数的定义域就是指能使这个式子有意义的实数的集合,函数的定义域、值域要写成集合或区间的形式.

  例2、设一个矩形周长为80,其中一边长为x,求它的面积关于x的函数的解析式,并写出定义域.

  分析:由题意知,另一边长为x,且边长x为正数,所以0<x<40.

  所以s==(40-x)x(0<x<40)

  引导学生小结几类函数的定义域:

  (1)如果f(x)是整式,那么函数的定义域是实数集R.

  2)如果f(x)是分式,那么函数的定义域是使分母不等于零的实数的集合.

  (3)如果f(x)是二次根式,那么函数的定义域是使根号内的式子大于或等于零的实数的集合.

  (4)如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合.(即求各集合的交集)

  (5)满足实际问题有意义.

  巩固练习:课本P19第1

  2、如何判断两个函数是否为同一函数

  例3、下列函数中哪个与函数y=x相等?

  分析:

  1构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)

  2两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

  解:

  课本P18例2

  (四)归纳小结

  ①从具体实例引入了函数的概念,用集合与对应的语言描述了函数的定义及其相关概念;②初步介绍了求函数定义域和判断同一函数的基本方法,同时引出了区间的概念.

  (五)设置问题,留下悬念

  1、课本P24习题1.2(A组)第1—7题(B组)第1题

  2、举出生活中函数的例子(三个以上),并用集合与对应的语言来描述函数,同时说出函数的定义域、值域和对应关系.

  课堂小结

高中数学教案怎么写模板(22)

    教学目标

  (1)了解用坐标法研究几何问题的方法,了解解析几何的基本问题。

  (2)理解曲线的方程、方程的曲线的概念,能根据曲线的已知条件求出曲线的方程,了解两条曲线交点的概念。

  (3)通过曲线方程概念的教学,培养学生数与形相互联系、对立统一的辩证唯物主义观点。

  (4)通过求曲线方程的教学,培养学生的转化能力和全面分析问题的能力,帮助学生理解解析几何的思想方法。

  (5)进一步理解数形结合的思想方法。

  教学建议

    教材分析

  (1)知识结构

  曲线与方程是在初中轨迹概念和本章直线方程概念之后的解析几何的基本概念,在充分讨论曲线方程概念后,介绍了坐标法和解析几何的思想,以及解析几何的基本问题,即由曲线的已知条件,求曲线方程;通过方程,研究曲线的性质。曲线方程的概念和求曲线方程的问题又有内在的逻辑顺序。前者回答什么是曲线方程,后者解决如何求出曲线方程。至于用曲线方程研究曲线性质则更在其后,本节不予研究。因此,本节涉及曲线方程概念和求曲线方程两大基本问题。

  (2)重点、难点分析

  ①本节内容教学的`重点是使学生理解曲线方程概念和掌握求曲线方程方法,以及领悟坐标法和解析几何的思想。

  ②本节的难点是曲线方程的概念和求曲线方程的方法。

    教法建议

  (1)曲线方程的概念是解析几何的核心概念,也是基础概念,教学中应从直线方程概念和轨迹概念入手,通过简单的实例引出曲线的点集与方程的解集之间的对应关系,说明曲线与方程的对应关系。曲线与方程对应关系的基础是点与坐标的对应关系。注意强调曲线方程的完备性和纯粹性。

  (2)可以结合已经学过的直线方程的知识帮助学生领会坐标法和解析几何的思想,学习解析几何的意义和要解决的问题,为学习求曲线的方程做好逻辑上的和心理上的准备。

  (3)无论是判断、证明,还是求解曲线的方程,都要紧扣曲线方程的概念,即始终以是否满足概念中的两条为准则。

  (4)从集合与对应的观点可以看得更清楚:

  设 表示曲线 上适合某种条件的点 的集合;

  表示二元方程的解对应的点的坐标的集合。

  可以用集合相等的概念来定义“曲线的方程”和“方程的曲线”,即

  (5)在学习求曲线方程的方法时,应从具体实例出发,引导学生从曲线的几何条件,一步步地、自然而然地过渡到代数方程(曲线的方程),这个过渡是一个从几何向代数不断转化的过程,在这个过程中提醒学生注意转化是否为等价的,这将决定第五步如何做。同时教师不要生硬地给出或总结出求解步骤,应在充分分析实例的基础上让学生自然地获得。教学中对课本例2的解法分析很重要。

  这五个步骤的实质是将产生曲线的几何条件逐步转化为代数方程,即

  文字语言中的几何条件 数学符号语言中的等式 数学符号语言中含动点坐标 , 的代数方程 简化了的 , 的代数方程

  由此可见,曲线方程就是产生曲线的几何条件的一种表现形式,这个形式的特点是“含动点坐标的代数方程。”

  (6)求曲线方程的问题是解析几何中一个基本的问题和长期的任务,不是一下子就彻底解决的,求解的方法是在不断的学习中掌握的,教学中要把握好“度”。

分享

热门关注

学前教育学教案范例(十三篇)

学前教育学教案范例

小学美术课教案范文(十七篇)

小学美术课教案范文

重阳节教案设计范文

重阳节教案

交通安全文明出行班会教案

交通安全出行班会教案

预防校园欺凌主题班会合集

预防校园欺凌

幼师教案反思小结怎么写

幼师教案反思小结怎么写

小学英语课堂教案范文模板13篇

小学英语课堂教案范文模板

初中政治教案模板范文七年级上册(经典十四篇)

初中政治教案模板范文七年级上册

全国爱牙日活动教案6篇

爱牙日活动教案

理想之光不灭教案5篇

关于理想教案