留学群专题频道考研高数易错点栏目,提供与考研高数易错点相关的所有资讯,希望我们所做的能让您感到满意!

考研数学备考:高数的9个高频易错点

考研数学备考 高数易错点 考研高数易错点

  暑假是考研路上或不可缺的黄金时光,大家一定要在这个时间里面好好的抓紧时间复习,下面由留学群小编为你精心准备了“考研数学备考:高数的9个高频易错点”,持续关注本站将可以持续获取更多的考试资讯!

考研数学备考:高数的9个高频易错点

  1.函数连续是函数极限存在的充分条件。若函数在某点连续,则该函数在该点必有极 限。若函数在某点不连续,则该函数在该点不一定无极 限。

  2,若函数在某点可导,则函数在该点一定连续。但是如果函数不可导,不能推出函数在该点一定不连续。

  3.基本初等函数在其定义域内是连续的,而初等函数在其定义区间上是连续的。

  4.在一元函数中,驻点可能是极值点,也可能不是极值点。函数的极值点必是函数的驻点或导数不存在的点。

  5.无穷小量与有界变量之积仍是无穷小量。

  6.可导是对定义域内的点而言的,处处可导则存在导函数,只要一个函数在定义域内某一点不可导,那么就不存在导函数,即使该函数在其它各处均可导。

  7.在求极 限的问题中,极 限包括函数的极 限和数列的极 限,但在考试中一般出的都是函数的极 限,求函数的极 限中,主要是掌握公式,有些不常见的公式一定要记熟,这种类型的题一般属于简单题,但往更难一点的方向出题的话,它会和变上限的定积分联系在一起出题。

  8.在运用两个重要极 限求函数极 限的时候,一定要首先把所求的式子变换成类似于两个重要极 限的形式,其次还需要看自变量的取极 限的范围是否和两个重要极 限一样。

  9.介值定理和零点定理的巧妙运用关键在于,观察和变换所要证明的式子的形式,构造辅助函数。

  推荐阅读:

  2020考研数学复习:高数高频考点

  2020考研数学复习:高数必考的38个知识点

  

与考研高数易错点相关的考研数学

推荐更多