留学群专题频道线性代数栏目,提供与线性代数相关的所有资讯,希望我们所做的能让您感到满意! 线性代数是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。线性代数的理论是计算技术的基础,同系统工程,优化理论及稳定性理论等有着密切联系,随着计算技术的发展和计算机的普及,线性代数作为理工科的一门基础课程日益受到重视。线性代数这门课程的特点是概念比较抽象,概念之间联系很密切。内容包括行列式,矩阵,向量空间,线性方程组,矩阵的相似对角化,二次型,线性空间与线性变换等。属于大学一年级工科部分计算机及电气,经管类专业学生必修科目,也可供科技工作者阅读。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。

考研数学2023年线性代数部分各题型考试备考经验分享

考研数学 考研数学备考经验

  2023年的考研马上就要在12月迎来初试部分的考试了,在初试考试的数学科目中,线性代数部分的考试内容往往难度较大,考生们在这一部分的得分能力也不强。本文中小编就为大家带来一份考研数学2023年线性代数部分各题型考试备考经验分享,欢迎大家前来阅读!

  第一、 行列式

  行列式这部分主要是利用性质熟练准确的计算出行列式的值,没有太多内容,行列式的重点是计算,矩阵。

  矩阵是基础,关联到整个线代。矩阵的运算很重要,尤其不要做非法的运算(因为大家习惯了数的运算,在做矩阵运算的时候容易受到数的影响,所以这个地方大家要把它搞清楚)。矩阵运算里一个很重要的就是初等变换。我们在解方程组,求特征向量都离不开这部分内容。这是我们矩阵部分的重点。

  第二、 向量

  向量这部分是逻辑性非常强的部分,主要包括证明(或判别)向量组的线性相关(无关),线性表出等问题,此问题的关键在于深刻理解线性相关 (无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。

  第三、 特征值、特征向量

  要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用。有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵。反过来,可由A的特征值,特征向量来确定A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A.

  第四、 二次型

  二次型的内容是针对于只考数学一、数学三的同学。二次型只要把其矩阵对应写出来,其问题都可以转化为对称矩阵的对角型来讨论。所以这部分的内容又联系上前面的内容了。把前面的基础打牢,后面的知识自然就掌握了。

  以往线性代数的题目,都是多个知识点的综合。除了考察学生的运算能力、抽象概括能力、逻辑思维能力以外,重点考察合运用所学知识解决实际问题的能力。因此,我们应该把基础打好之后,再通过多做题来锻炼自己的综合思维,通过做一些综合性较强的题目,做完之后多总结,达到对概念、性质内涵的理解和应用方法的掌握。

  推荐阅读:

  2023年考研数学(三)考试大纲内容(线性代数部分)

  考研数学2023年线性代数部分重点考试内容解析

  

与线性代数相关的考研数学

考研数学2023年线性代数部分重点考试内容解析

考研数学 考研数学知识点解析

  2023年的全国硕士研究生招生考试目前已经进入到初试考试的最后复习阶段,各位考生们也都在积极的进行着考前的备考工作。下面的内容是小编为大家准备的考研数学2023年线性代数部分重点考试内容解析,有需要的小伙伴们快来看看吧!

  特征值、特征向量是线性代数的重点内容,是考研的重点之一,题多分值大。

  1、重点内容:

  (1)特征值和特征向量的概念及计算

  (2)方阵的相似对角化

  (3)实对称矩阵的正交相似对角化

  2、常见题型:

  (1)数值矩阵的特征值和特征向量的求法

  (2)抽象矩阵特征值和特征向量的求法

  (3)矩阵相似的判定及逆问题(2014出大题)

  (3)矩阵的相似对角化及逆问题

  (4)由特征值或特征向量反求A

  (5)有关实对称矩阵的问题

考研初试各科分数组成:

  政治:

  马原24分,毛特30分,史纲14分,思修与法律基础16分,当代世界经济与形势与政策16分,满分100分。

  英语:

  完型10分,阅读A40分,阅读B(即新题型)10分,翻译(英语一10分,英语二15分),大作文(英语一20分,英语二15分),小作文10分,满分100分。

  数学:

  理工类(数学一、数学二) 、经济类(数学三)

  数学一:高数56%、线性代数22%、概率统计22%

  数学二:高数78%、线性代数22%、不考概率统计

  数学三:高数56%、线性代数22%、概率统计22%

  数学满分150分。

  一般情况下,工科类的为数学一和数学二。专业课由于是自主命题,试卷结构详见各招生单位公布的信息。

  专业课:

与线性代数相关的考研数学

2023年考研数学线性代数部分考试复习方法解析

考研 考研数学 考研数学复习方法

  数学在考研的初试环节是大部分考生都无法逃避的科目之一,对于数学基础并不好的考生来说,数学真是一座难以逾越的大山,为了帮助大家的备考,小编为大家带来了2023年考研数学线性代数部分考试复习方法解析,供大家参考学习,欢迎大家前来阅读!

  考研数学中,高数、直线生成、概率论各科目都有自己的特点,因此复习策略也有不同。

  线性代数的特点是有大量的公式、概念和结论,这不仅要求你知道每个公式的具体内容是什么,而且要准确记住公式使用的前提条件;同时,当前代数的几乎每一个概念和性质之间都有联系,整个线性代数学科的知识是一个网络结构,这也体现了数学研究生考试一个非常重要的特点:综合性。在解题的过程中,如果一个公式或结论不知道,那么用这个知识背后所有相关的题目都是做不到的,相反,一个题目可能有很多方法,可以用很多角度来讨论一个问题,但是每个角度考的都是不同的知识,甚至是不同的章节内容。

  在了解了本行产生本课题的特点后,复习过程就可以有针对性、有针对性地复习。

  首先,关注基础。在复习初期一定要注意基础,把考试大纲中涉及到的知识点再完整地学习,搞好对“三个基本”的学习和理解:基本概念、基本理论、基本方法。很多考生基本功不够扎实,有的考生在复习时追求偏颇,难题、怪题,而且对基本概念、基本理论和基本方法的重视不够,投入不足,使最终的线代成绩不理想。

  其次,打好基础之后,可以解决线代的另一个特点:全面。在打好基础的前提下,梳理直线生成的整体知识脉络,厘清各个知识点之间的关系,对直线生成的整个学科有一个整体的把握。通过做题来了解考试中如何考查各个知识点及其之间的联系,最终形成对学科知识的系统认识。

  最后,我们可以把在复习过程中经常犯的错误或不会做的题目收集起来,组织成“错题目本”,分析做错或不会做的原因在哪些方面,是不熟悉题型,还是对知识点不清楚,或者是不记得公式等等。隔一段时间复习一下“错书”的内容,进一步巩固和提高相应的知识点。

  一般来说,我们在复习的时候先打好基础,然后提高自己的综合能力,最后多做题来提高自己的熟练程度。

考研初试各科分数组成:

  政治:

  马原24分,毛特30分,史纲14分,思修与法律基础16分,当代世界经济与形势与政策16分,满分100分。

  英语:

  完型10分,阅读A40分,阅读B(即新题型)10分,翻译(英语一10分,英语二15分),大作文(英语一20分,英语二15分),小作文10分,满分100...

与线性代数相关的考研数学

2023年考研数学(三)考试大纲内容(线性代数部分)

考研 考研大纲

  2023年的全国硕士研究生招生考试距离正式开考只剩下两个月左右的时间了,两个月后考生们就要正式开始初试考试了,下面小编就为大家带来2023年考研数学(三)考试大纲中线性代数部分的内容,供大家参考学习,欢迎大家前来阅读!

  线性代数

  一、行列式

  【考试内容】

  行列式的概念和基本性质 行列式按行(列)展开定理

  【考试要求】

  1.了解行列式的概念,掌握行列式的性质.

  2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.

  二、矩阵

  【考试内容】

  矩阵的概念 矩阵的线性运算 矩阵的乘法 方阵的幂 方阵乘积的行列式 矩阵的转置 逆矩阵的概念和性质 矩阵可逆的充分必要条件 伴随矩阵 矩阵的初等变换 初等矩阵 矩阵的秩 矩阵的等价 分块矩阵及其运算

  【考试要求】

  1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵的定义及性质,了解对称矩阵、反对称矩阵及正交矩阵等的定义和性质.

  2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.

  3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.

  4.了解矩阵的初等变换和初等矩阵及矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的逆矩阵和秩的方法.

  5.了解分块矩阵的概念,掌握分块矩阵的运算法则.

  三、向量

  【考试内容】

  向量的概念 向量的线性组合与线性表示 向量组的线性相关与线性无关 向量组的极大线性无关组 等价向量组 向量组的秩 向量组的秩与矩阵的秩之间的关系 向量的内积 线性无关向量组的正交规范化方法

  【考试要求】

  1.了解向量的概念,掌握向量的加法和数乘运算法则.

  2.理解向量的线性组合与线性表示、向量组线性相关、线性无关等概念,掌握向量组线性相关、线性无关的有关性质及判别法.

  3.理解向量组的极大线性无关组的概念,会求向量组的极大线性无关组及秩.

  4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.

  5.了解内积的概念.掌握线性无关向量组正交规范化的施密特(Schmidt)方法.

  四、线性方程组

  【考试内容】

  线性方程组的克拉默(Cramer)法则 齐次线性方程组有非零解的充分必要条件 非齐次线性方程组有解的充分必要条件 线性方程组解的性质和解的结构 齐次线性方...

与线性代数相关的考研大纲

2023年考研数学线性代数考试四大考试重点及考察方式

考研 考研数学 线性代数

  2022年的考研内容已经结束,目前即将在今年十二月举行的是2023年的研究生招生考试,大家在复习数学这一科目时,对于线性代数部分的知识,是否清楚哪一部分内容是考试重点呢?快和小编一起来看看2023年考研数学线性代数考试四大考试重点及考察方式吧!

  线性代数概念多、定理多、符号多、运算规律多、内容相互纵横交错,知识前后紧密联系。线性代数的考题与高等数学、概率部分考题最大的不同就是,线性代数的一道考题可能会牵涉到行列式、矩阵、向量等等很多知识点,这是因为线性代数各个章节知识之间联系非常紧密,知识是一个环环相扣且互相融合的。因此考研复习重点应该先充分理解概念,掌握定理的条件、结论、应用,熟悉符号意义,掌握各种运算规律、计算方法等。在掌握基本概念、基本性质和基本方法的基础上,多做一些基本题来巩固基本知识,并及时总结,学会举一反三,融会贯通。

  总结以往经验,为大家列举线代四大重点部分:

考试重点内容:

  第一、 行列式

  行列式这部分主要是利用性质熟练准确的计算出行列式的值,没有太多内容,行列式的重点是计算,矩阵。

  矩阵是基础,关联到整个线代。矩阵的运算很重要,尤其不要做非法的运算(因为大家习惯了数的运算,在做矩阵运算的时候容易受到数的影响,所以这个地方大家要把它搞清楚)。矩阵运算里一个很重要的就是初等变换。我们在解方程组,求特征向量都离不开这部分内容。这是我们矩阵部分的重点。

  第二、 向量

  向量这部分是逻辑性非常强的部分,主要包括证明(或判别)向量组的线性相关(无关),线性表出等问题,此问题的关键在于深刻理解线性相关 (无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。

  第三、 特征值、特征向量

  要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用。有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵。反过来,可由A的特征值,特征向量来确定A的参数或确定A,如果A是实对...

与线性代数相关的考研数学

2023年考研数学线性代数复习四大流程

考研 考研数学 考研数学复习

  2023年的研究生招生考试即将在今年的12月的月底开始进行笔试考试,各位考生在复习过程中面对数学这一科目是不是觉得无从下手呢?小编为大家整理了20232年考研数学线性代数复习四大流程,供大家学习参考,快来看看吧!

  1、掌握基本概念

  在线代中,基本的概念定义是特别重要的。定义往往是掌握原理的出发点的,例如线性相关无关,矩阵的关系中等价,相似,合同等。把这些说法用数学语言严格的表示出来就是定义,然后再分析相互之间有什么联系。

  在考研数学中会出现一些考查说法的选择题,这类题就是专捡那些易混淆部分来考的,命题人可谓是挖空心思,无孔不入,大家可以翻翻历年真题看看就明白了。

  线性代数的概念很多,重要的概念有:代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。

  2、弄清联系和区别

  线性代数内容前后联系紧密,相互渗透,各知识点之间有着千丝万缕的联系,因此解题方法灵活多变。记住知识点不是难事,但要把握好知识点的相互联系,非得下一番功夫不可。

  首先要把握定理和公式成立的条件,一定要注意同时把某一知识点对应的适用条件掌握好!再者要弄清知识点之间的纵横联系,另外还有容易混淆的地方,如矩阵的等价和向量组的等价之间的关系,线性相关与线性表示等。掌握它们之间的联系与区别,对大家做线性代数部分的大题也有很大的帮助。

  3、建立知识框架

  基础阶段线代要大概围绕以下内容建立知识框架,即线性方程组,向量,秩,矩阵运算。建立知识框架,类似于围棋中的布局,要想下好棋,大局观非常重要,这在线性代数尤其重要。

  线性代数的学习切入点:线性方程组,线代贯穿的主线就是求方程组的解,换言之,可以把线性代数看作是在研究线性方程组这一对象的过程中建立起来的学科,不管是向量的线性相关,线性表示,还是求特征向量,都是围绕线性方程组。关于线性方程组的解,有三个问题值得讨论:(1)方程组是否有解,即解的存在性问题;(2)方程组如何求解,有多少个解;(3)方程组有不止一个解时,这些不同的解之间有无内在联系,即解的结构问题。

  线性方程组求解主要是高斯消元法,在利用求解的过程中涉及到一种重要的运算,即把某一行的倍数加到另一行上,也就是说,为了研究从线性方程组的系数和常数项判断它有没有解,有多少解的问题,需要定义这样的运算,这提示我们可以把问题转为直接研究这种对n元有序数组的数量乘法和加法运算,即向量。例如大家可以通过一些简单例子体会线性相关和线性无关(零向量一定线性无关、单个非零向量线性无关、单位向量组线性无关等等)。也可以从多个角度(线性组合角度、线性表出角度、齐次线性方程组角度)体会线性相关和线性无关的本质。这部分内容概念多,定理性质也多,光凭记忆是很难掌握的。

  秩是一个非常深刻而重要的概念,就可以判断向量组是线性相关还是线性无关,有了秩的概念以后,我们可以把线性相关的向量组用它的极大线性无关组来替换掉,从而得到线性方程组有解的充分必要条件:若系数矩阵的列向量组的秩和增广矩阵的列向量组的秩相等,则有解,若不等,则无解。秩的灵活运用,充分体现了线性代数中推理和抽象性...

与线性代数相关的考研数学

2023年考研数学线性代数各章节考试重要知识点内容分析

考研 考研数学 考研数学知识点

  在今年的12月24日,各位考研人们就要踏上2023年的研究生招生考试,在开考之前的复习时间里,各位考生对于数学这一考试科目的复习知识点掌握的如何呢?快和小编一起来看看2023年考研数学线性代数各章节考试重要知识点内容分析吧!

  一、第一章行列式

  本章的重点是行列式的计算,主要有两种类型的题目:数值型行列式的计算和抽象型行列式的计算。数值型行列式的计算不会以单独题目的形式考查,但是在解决线性方程组求解问题以及特征值与特征向量的问题时均涉及到数值型行列式的计算而抽象型行列式的计算问题会以填空题的形式展现,在历年考研中可以找到有关抽象型行列式的计算问题。

  因此,广大考生在复习期间行列式这块要做到利用行列式的性质及展开定理熟练的、准确的计算出数值型行列式的值,不论是高阶的还是低阶的都要会计算另外还要会综合后面的知识会计算简单的抽象行列式的值。

  二、第二章矩阵

  本章需要重点掌握的基本概念有可逆矩阵、伴随矩阵、分块矩阵和初等矩阵,可逆阵与伴随矩阵的相关性质也很重要,也是需要考生掌握的。除了这些就是矩阵的基本运算,可以将矩阵的运算分为两个层次:

  1、矩阵的符号运算

  2、具体矩阵的数值运算

  矩阵的符号运算就是利用相关矩阵的性质对给出的矩阵等式进行化简,而具体矩阵的数值运算主要指矩阵的乘法运算、求逆运算等。

  三、第三章向量

  本章的重点有:

  1、向量组的线性相关性证明、线性表出等问题,解决此类问题的关键在于深刻理解向量组的线性相关性概念,掌握线性相关性的几个相关定理,另外还要注意推证过程中逻辑的正确性,还要善于使用反证法。

  2、向量组的极大无关组、等价向量组、向量组及矩阵秩的概念,以及它们之间的相互关系。要求会用矩阵的初等变换求向量组的极大线性无关组以及向量组或者矩阵的秩。

  四、第四章线性方程组

  本章的重点是利用向量这个工具解决线性方程组解的判定及解的结构问题。题目基本没有难度,但是考生在复习的时候要注意将向量与线性方程组两章的知识内容联系起来,学会融会贯通。

  五、第五章特征值与特征向量

  本章的基本要求有三点:

  1、要会求特征值、特征向量

  对于具体给定的数值型矩阵,一般方法是经过特征方程∣&lambdaE-A∣=0求出特征值,然后经过求解齐次线性方程组(&lambdaE-A)&xi=0的非零解得出对应特征值的特征向量而对于抽象的矩阵来说,在求特征值时主要考虑利用定义A&xi=&lambda&xi,另外还要注意特征值与特征向量的性质及其应用。

  2、矩阵的相似对角化问题

  要求掌握一般矩阵相似对角化的条件,但是重点是实对称矩阵的相似对角化,即实对称矩阵的正交相似于对角阵。这块的知识出题比较灵活,可直接出题,也可以根据矩阵A的特征值、特征向量来确定矩阵A中的参数或者确定矩阵A另外由于实对称矩阵不同特征值的特征向量是相互正交的,这样还可以由已知特征值&l...

与线性代数相关的考研数学

2023年考研数学线性代数考察方式及考试重要考点内容分析

考研 考研数学 考研数学知识点

  考研数学往往是考研人们在复习过程中花费精力最多的一门考试,对于高数和线性代数的双重折磨,很多考生表示不想再体验第二次,那么接下来小编就为大家带来2023年考研数学线性代数考察方式及考试重要考点内容分析,快来看看吧!

  考察方式:

  一、客观题(选择题和填空题)

  常考查矩阵的性质、计算以及向量的线性相关性等知识点。向量的线性相关性是比较难的一部分内容,大家复习的时候要记住相关的结论并深刻理解,最好是能够自己试着证明结论,这样有助于巩固掌握相关结论。而矩阵的性质及运算,是每年客观题考查的最多的,像初等矩阵的运算、伴随矩阵的性质、矩阵的秩、矩阵合同、矩阵相似等等,非常多而且联系紧密,需要我们在复习的时候总结,做题的时候看用到哪个知识点,把它们摘列在笔记本上。如果做题多了,你会发现有些性质是常考考点,几乎每年都考,而且这些性质是怎么考的,什么时候该用这些性质,在试题或是模拟题中都有着规律的反映。

  二、解答题

  近几年来看,都是考查计算题的,或者以计算为考查内容的证明题。其中,线性方程组是经常考的,或者考查向量的线性表出问题,实际上也可以归结为线性方程组的问题,一个向量能否或是如何由一组向量来线性表示,也就是考查相应的非齐次线性方程组是否有解或是通解(解)是什么样的。另外,对于解的结构,也需要大家深入理解,给出解的形式,要能够知道相应的系数矩阵的性质。所以,大家复习的时候一定要掌握齐次和非齐次线性方程组的解法,不但要知道如何解,还要能够快速准确的解出来;同时,还要弄清楚解线性方程组和相应的向量问题是如何转化的。而特征值和特征向量,不但是重要考点,同时也是难点之一,也是解答题考查的内容。最近几年考题,不再是简单的给出一个矩阵,然后求特征值特征向量,求相似对角化的问题了。常见的形式,是不给出矩阵,而是给出部分特征值或部分特征向量,让大家反过来求出矩阵,或是相似对角化。这样的问题,就需要我们对特征值的概念、性质有很深的理解,对于常用的性质结论也要掌握的非常熟悉,比如特征值和行列式的关系,特征值和迹的关系等等。只有这样才可能解的出来。二次型的问题可以转化为相似对角化的问题,因为二次型和它的实对称矩阵是一一对应的。这样就归于前面的问题了。

  综合来看,线性代数的内容没有高数那么多,但是知识体系相对比较松散,大家容易找不到重点。复习的时候,要对照考试大纲,分析清楚哪部分内容考查大家的方式是怎样的,性质定理该归纳的归纳,该理解的理解。更重要的,一定要强化训练,不但要清楚一道题怎么解,更要实实在在的把它写出来,“眼高手低”是很多复习线代的同学的通病。及时总结,强化练习。

  重要考点:

  一、行列式部分,强化概念性质,熟练行列式的求法

  在这里提醒各位考生,行列式对应的是一个数值,是一个实数,明确这一点可以帮助我们检查一些疏漏的低级错误行列式的计算方法中常用的是定义法,比较重要的是加边法,数学归纳法,降阶法,利用行列式的性质对行列式进行恒等变形,化简之后再按行或列展开。另外范德蒙行列式也是需要掌握的行列式的考查方式分为低阶的数字型矩阵和高阶抽象行列式的计算、含参数的行列式的计算等。

  二、矩阵部分,重视矩阵运算,掌握矩阵秩的应用

  经...

与线性代数相关的考研数学

2023年考研数学线性代数考试知识点内容分析梳理及解题技巧

考研 考研数学 考研数学知识点

  在考研数学中,不管是考哪一类的数学,都逃不开高数和线性代数,所以各位考生在复习当中对于高数和线性代数的学习就显得尤为重要,那么接下来小编就为大家带来2023年考研数学线性代数考试知识点内容分析梳理及解题技巧,一起来看看吧!

  线性代数一共六章的内容。

  其中第一章行列式,它在整张试卷中所占比例不是很大,一般以填空题和选择题为主,但它是必考内容,即便没有单独考查的题目,也会在其它的试题中给以考查,如求特征值就是计算相应的行列式。

  行列式的重点内容是掌握计算行列式的方法,同学们要掌握降阶法求行列式,以及其它的像爪型、三对角、范德蒙、行和或列和相等的行列式的求法。矩阵是后面各章节的基础。矩阵的概念、运算及理论贯穿线性代数的始末。这部分考点较多,像逆矩阵、伴随矩阵、转置矩阵、矩阵的幂、矩阵的行列式等概念的定义、性质、运算等等是每年考研的重点内容,同学们在复习的时候一定要注意归纳总结才可能掌握好。向量组的线性相关性是线性代数的重点也是考研的难点,大家复习的时候一定要吃透向量组线性相关性的概念,熟练掌握有关性质及判定方法并能灵活应用,还要弄清楚线性表出、向量组的秩及线性方程组等之间的联系,从各个侧面加强对线性相关性的理解。

  在历年的考研真题中,方程组是每年必考的题目,这也是线性代数部分考查的重点内容。要掌握齐次和非齐次线性方程组的解的判定定理,能够熟练求解线性方程组。这部分内容是重点考查解答题的章节。

  特征值和特征向量也是考研的重点内容之一,题多分值大,共有三部分内容:特征值和特征向量的概念及计算、方阵的相似对角化、实对称矩阵的正交相似对角化。相对而言,这部分计算量是比较大的,复习的时候一定要加强练习。由于二次型与它的实对称矩阵是一一对应的,所以二次型的很多问题都可以转化为它的实对称矩阵的问题,只要正确写出二次型所对应的实对称矩阵,就可以利用相似对角化的方法解决二次型的问题了。解线性方程组和矩阵相似对角化是每年两道大题最容易考查的地方。

  通过对历年真题的研究分析可以得出,对基本概念、基本性质和基本方法的考查才是考研数学的重点,真题中所谓的难题也都是在基础概念、基本性质及基本方法上进行加深的,这一点在线性代数这个模块上体现的更加明显。所以,考生在复习中一定要重视基本概念、基本性质和基本方法的理解与掌握,多做一些基本题来巩固基础知识。

  对于线性代数中的基本运算,行列式的计算(数值型、抽象型),求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关性的判定,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量,判断矩阵是否可以相似对角化,求相似对角矩阵,用正交变换法化实对称矩阵为对角矩阵,用正交变换化二次型为标准形等等。一定要注意总结这些基本运算的运算方法。例如,复习行列式的计算时,就要将各种类型的行列式计算方法掌握清楚,如,行(列)和相等型、爪型、三对角线型,范德蒙行列式等等。

  大家复习时一定要注重知识点的衔接与转换,不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。比如,在复习过程中,我们可以以方程组解的讨论为复习主线,弄清楚它与行列式、向量、矩阵、特征值与特征向量之间有什么样的关系,掌握他们...

与线性代数相关的考研数学

2021考研数学线性代数应该怎么备考复习?

考研数学线性代数备考复习 2021考研数学线性代数备考复习 考研数学备考复习

  不知不觉已经到了九月,为了做好备考复习,下面由留学群小编为你精心准备了“2021考研数学线性代数应该怎么备考复习?”,持续关注本站将可以持续获取更多的考试资讯!

  2021考研数学线性代数应该怎么备考复习?

  一、行列式

  行列式这部分主要是利用性质熟练准确的计算出行列式的值,没有太多内容,行列式的重点是计算,矩阵。

  矩阵是基础,关联到整个线代。矩阵的运算很重要,尤其不要做非法的运算(因为大家习惯了数的运算,在做矩阵运算的时候容易受到数的影响,所以这个地方大家要把它搞清楚)。矩阵运算里一个很重要的就是初等变换。我们在解方程组,求特征向量都离不开这部分内容。这是我们矩阵部分的重点。

  二、向量

  向量这部分是逻辑性非常强的部分,主要包括证明(或判别)向量组的线性相关(无关),线性表出等问题,此问题的关键在于深刻理解线性相关(无关)的概念及几个相关定理的掌握,并要注意推证过程中逻辑的正确性及反证法的使用。向量组的极大无关组,等价向量组,向量组及矩阵的秩的概念,以及它们相互关系也是重点内容之一。用初等行变换是求向量组的极大无关组及向量组和矩阵秩的有效方法。

  三、特征值、特征向量

  要会求特征值、特征向量,对具体给定的数值矩阵,一般用特征方程∣λE-A∣=0及(λE-A)ξ=0即可,抽象的由给定矩阵的特征值求其相关矩阵的特征值(的取值范围),可用定义Aξ=λξ,同时还应注意特征值和特征向量的性质及其应用。有关相似矩阵和相似对角化的问题,一般矩阵相似对角化的条件。实对称矩阵的相似对角化及正交变换相似于对角阵。反过来,可由A的特征值,特征向量来确定A的参数或确定A,如果A是实对称阵,利用不同特征值对应的特征向量相互正交,有时还可以由已知λ1的特征向量确定出λ2(λ2≠λ1)对应的特征向量,从而确定出A.

  四、二次型

  二次型的内容是针对于只考数学一、数学三的同学。二次型只要把其矩阵对应写出来,其问题都可以转化为对称矩阵的对角型来讨论。所以这部分的内容又联系上前面的内容了。把前面的基础打牢,后面的知识自然就掌握了。

  以往线性代数的题目,都是多个知识点的综合。除了考察学生的运算能力、抽象概括能力、逻辑思维能力以外,重点考察合运用所学知识解决实际问题的能力。因此,我们应该把基础打好之后,再通过多做题来锻炼自己的综合思维,通过做一些综合性较强的题目,做完之后多总结,达到对概念、性质内涵的理解和应用方法的掌握。

  推荐阅读:

  2021考研数学线性代数应...

与线性代数相关的考研数学

推荐更多