留学群专题频道等差数列高考题栏目,提供与等差数列高考题相关的所有资讯,希望我们所做的能让您感到满意!

等差数列教案范文

等差数列教案 教案范文

  数列在整个中学数学内容中处于一个知识汇合点的地位,很多知识都与数列有着密切联系。下面是留学群整理的等差数列教案范文,让小编带大家去认识等差数列。

  等差数列教案范文

  2.2.1 等差数列

  整体设计

  教学分析

  本节课将探究一类特殊的数列——等差数列.本节课安排2课时,第1课时是在生活中具体例子的基础上引出等差数列的概念,接着用不完全归纳法归纳出等差数列的通项公式,最后根据这个公式去进行有关计算.第2课时主要是让学生明确等差中项的概念,进一步熟练掌握等差数列的通项公式及其推导的公式,并能通过通项公式与图象认识等差数列的性质.让学生明白一个数列的通项公式是关于正整数n的一次型函数,使学生学会用图象与通项公式的关系解决某些问题.在学法上,引导学生去联想、探索,同时鼓励学生大胆质疑,学会探究.在问题探索过程中,先从观察入手,发现问题的特点,形成解决问题的初步思路,然后用归纳方法进行试探,提出猜想,最后采用证明方法(或举反例)来检验所提出的猜想.其中例1是巩固定义,例2到例5是等差数列通项公式的灵活运用.

  在教学过程中,应遵循学生的认知规律,充分调动学生的积极性,尽可能让学生经历知识的形成和发展过程,激发他们的学习兴趣,发挥他们的主观能动性及其在教学过程中的主体地位.使学生认识到生活离不开数学,同样数学也是离不开生活的.学会在生活中挖掘数学问题,解决数学问题,使数学生活化,生活数学化.

  数列在整个中学数学内容中处于一个知识汇合点的地位,很多知识都与数列有着密切联系,过去学过的数、式、方程、函数、简易逻辑等知识在这一章均得到了较为充分的应用,而学习数列又为后面学习数列与函数的极限等内容作了铺垫.教材采取将代数、几何打通的混编体系的主要目的是强化数学知识的内在联系,而数列正是在将各知识沟通方面发挥了重要作用.因此本节内容是培养学生观察问题、启发学生思考问题的好素材.

  三维目标

  1.通过实例理解等差数列的概念,通过生活中的实例抽象出等差数列模型,让学生认识到这一类数列是现实世界中大量存在的数列模型.同时经历由发现几个具体数列的等差关系,归纳出等差数列的定义的过程.

  2.探索并掌握等差数列的通项公式,由等差数列的概念,通过归纳或迭加或迭代的方式探索等差数列的通项公式.通过与一次函数的图象类比,探索等差数列的通项公式的图象特征与一次函数之间的联系.

  3.通过对等差数列的研究,使学生明确等 差数列与一般数列的内在联系,渗透特殊与一般的辩证唯物主义观点,加强理论联系实际,激发学生的学习兴趣.

  重点难点

  教学重点:等差数列的概念,等差数列的通项公式,等差中项及性质,会用公式解决一些简单的问题.

  教学难点:概括通项公式推导过程中体现的数学思想方法,以及从函数、方程的观点看通项公式,并会解决一些相关的问题.

  课时安排

  2课时

  教学过程

  第1课时

  导入新课

  思路1.(直接导入)教师引导学生先复习上节课学过的数列的概念以及通项公式,可有意识地在黑板上(或课件中)出示几个数列,如:数列1,2,3,…,数列0,0,0,…,数列0,2,4,6,…等,然后直接引导学生阅读教材...

与等差数列高考题相关的高中教案

等差数列求和公式有哪些

等差数列 数列求和公式 等差数列求和公式

  等差数列是高中数学的重点之一,那么等差数列求和公式有哪些呢?快来和小编一起看看吧。下面是由留学群小编为大家整理的“等差数列求和公式有哪些”,仅供参考,欢迎大家阅读。

  等差数列求和公式

  公式法

  an=a1+(n-1)d。

  前n项和公式为:Sn=na1+n(n-1)d/2。

  若公差d=1时:Sn=(a1+an)n/2;

  若m+n=p+q则:存在am+an=ap+aq;

  若m+n=2p则:am+an=2ap。

  以上n均为正整数。

  倒序相加法

  这是推导等差数列的前n项和公式时所用的方法,就是将一个数列倒过来排列(反序),再把它与原数列相加,就可以得到n个(a1+an)。

  Sn =a1+ a2+ a3+...... +an。

  Sn =an+ an-1+an-2...... +a1。

  上下相加得Sn=(a1+an)n/2。

  分组法

  有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。

  例如:an=2n+n-1,可看做是2n与n-1的和;

  Sn=a1+a2+...+an

  =2+0+22+1+23+2+...+2n+n-1

  =(2+22+...+2n)+(0+1+...+n-1)

  =2(2n-1)/(2-1)+(0+n-1)n/2

  =2n+1+n(n-1)/2-2

  拓展阅读:数学学习复习方法

  观察法

  观察法,是通过观察题目中数字的变化规律及位置特点,条件与结论之间的关系,题目的结构特点及图形的特征,从而发现题目中的数量关系,把题目阶段解答出来的一种解题方法。观察要有次序,要看的仔细、真切、在观察中要动脑,要想出道理、找出规律。

  假设法

  当遇到一些条件少、无法下手的题目时,我们可假设一些简单好算的数量,或将运动变化的问题假设或静止特殊的问题;对条件多、无法理清头绪的题目,将其中几个不同的条件假设相同等等,这样将会冲破常规思维的禁锢,获得巧解,这也是灵活应用极端化的策略。

  代数法

  在解答数学问题时,用字母代替未知数,根据等量关系列出方程,从而求出结果,这种方法称为代数法。学会用代数法解题,好比掌握了解题的金钥匙。

  整形结合

  在非常有趣的数学学科中“数”与“形”就像一对形影不离的亲兄弟,几乎所有的数量关系或数学规律都可以用直观的示意图来反映。正如著名数学家华罗庚所言:“数缺形时少直观,形少数时难人数”,解题时如果能用到数形结合的策略分析解答,就会充分发挥“数”与“形”的互助作用,使问题非常直观、易懂、收到不解自明的效果。

  逆推法

与等差数列高考题相关的实用资料

等差数列公式是什么?

等差数列公式 等差数列公式是什么 关于等差数列公式的解析

  关于等差数列考生了解多少,等差数列的公式又是什么呢?需要了解的小伙伴们看过来,下面由留学群小编为你精心准备了“等差数列公式是什么?”,持续关注本站将可以持续获取更多的考试资讯!

  等差数列公式是什么?

  等差数列公式:等差数列前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。

  等差数列{an}的通项公式为:an=a1+(n-1)d。等差数列公式

等差数列公式
等差数列公式

  推荐阅读:

  等差数列求和是什么?

  等差数列求和公式和方法

  圆台体积公式是什么?

...

等差数列求和是什么?

等差数列求和 等差数列求和是什么 关于等差数列求和的定义

  等差数列求和也属于常见数列,那它的概念是什么那?尚不了解的考生看过来,下面由留学群小编为你精心准备了“等差数列求和是什么?”,持续关注本站将可以持续获取更多的考试资讯!

  等差数列求和是什么?

  一、等差数列求和

  Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2。等差数列是常见数列的一种,可以用AP表示,如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,而这个常数叫做等差数列的公差,公差常用字母d表示。  

  二、等差数列基本公式

  末项=首项+(项数-1)×公差

  项数=(末项-首项)÷公差+1

  首项=末项-(项数-1)×公差

  和=(首项+末项)×项数÷2

  末项:最后一位数

  首项:第一位数

  项数:一共有几位数

  和:求一共数的总和

  三、等差数列求和公式其他结论

等差数列求和

  四、推论

  1、从通项公式可以看出,a(n)是n的一次函数(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由前n项和公式知,S(n)是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。

  2、从等差数列的定义、通项公式,前n项和公式还可推出:a(1)+a(n)=a(2)+a(n-1)=a(3)+a(n-2)=…=a(k)+a(n-k+1),(类似:p(1)+p(n)=p(2)+p(n-1)=p(3)+p(n-2)=。。。=p(k)+p(n-k+1)),k∈{1,2,…,n}。

  3、若m,n,p,q∈N*,且m+n=p+q,则有a(m)+a(n)=a(p)+a(q),S(2n-1)=(2n-1)*a(n),S(2n+1)=(2n+1)*a(n+1),S(k),S(2k)-S(k),S(3k)-S(2k),…,S(n)*k-S(n-1)*k…成等差数列,等等。若m+n=2p,则a(m)+a(n)=2*a(p)。

  证明:p(m)+p(n)=b(0)+b(1)*m+b(0)+b(1)*n=2*b(0)+b(1)*(m+n);p(p)+p(q)=b(0)+b(1)*p+b(0)+b(1)*q=2*b(0)+b(1)*(p+q);因为m+n=p+q,所以p(m)+p(n)=p(p)+p。

  推荐阅读:

  

等差数列求和方法总结

求和方法 等差数列 数列求和方法

  等差数列求和方法同学们总结过吗?如果没有请来小编这里瞧瞧。下面是由留学群小编为大家整理的“等差数列求和方法总结”,仅供参考,欢迎大家阅读。

  等差数列求和方法总结

  一.用倒序相加法求数列的前n项和

  如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的`和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。

  例题1:设等差数列{an},公差为d,求证:{an}的前n项和Sn=n(a1+an)/2

  解:Sn=a1+a2+a3+...+an ①

  倒序得:Sn=an+an-1+an-2+…+a1 ②

  ①+②得:2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1)

  又∵a1+an=a2+an-1=a3+an-2=…=an+a1

  ∴2Sn=n(a2+an) Sn=n(a1+an)/2

  二.用公式法求数列的前n项和

  对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。

  三.用裂项相消法求数列的前n项和

  裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。

  四.用错位相减法求数列的前n项和

  错位相减法是一种常用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列{an·bn}中,{an}成等差数列,{bn}成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。

  五.用迭加法求数列的前n项和

  迭加法主要应用于数列{an}满足an+1=an+f(n),其中f(n)是等差数列或等比数列的条件下,可把这个式子变成an+1-an=f(n),代入各项,得到一系列式子,把所有的式子加到一起,经过整理,可求出an ,从而求出Sn。

  六.用分组求和法求数列的前n项和

  分组求和法就是对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。

  七.用构造法求数列的前n项和

  构造法就是先根据数列的结构及特征进行分析,找出数列的通项的特征,构造出我们熟知的基本数列的通项的特征形式,从而求出数列的前n项和。

  拓展阅读:高中数学数列公式

  等比数列:

  若q=1 则S=n*a1

  若q≠1

  推倒过程:

  S=a1+a1*q+a1*q^2+……+a1*q^(n-1)

  等式两边同时乘q

...

等差数列求和公式小学

小学等差数列 求和公式 数列求和公式

  小学的等差数列求和公式,同学们还有印象吗?如果没有了,请来小编这里瞧瞧。下面是由留学群小编为大家整理的“等差数列求和公式小学”,仅供参考,欢迎大家阅读。

  等差数列求和公式小学

  等差数列求和公式:Sn=a1*n+[n*(n-1)*d]/2。等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

  数列(sequence of number),是以正整数集(或它的有限子集)为定义域的函数,是一列有序的数。数列中的每一个数都叫做这个数列的项。排在第一位的数称为这个数列的第1项(通常也叫做首项),排在第二位的数称为这个数列的第2项,以此类推,排在第n位的数称为这个数列的第n项,通常用an表示。

  拓展阅读:数列求和公式七个方法

  数列求和公式七个方法:公式法、列项相消法、错位相减法、分解法、分组法、倒序相加法、特殊数列求和。推导等差数列的前n项和公式的方法是倒序相加法。而且这个方法可以类推到一般情况,只要前n项具有与两端等距离项的和相等的数列这种特征都可用这种方法求和。

  三角函数什么时候学

  三角函数是初中数学九年级的内容。包括正弦、余弦和正切.。高中时也会学到,比初中讲的更为详细。三角函数通常定义为包含这个角的直角三角形的两个边的比率,也可以等价的定义为单位圆上的各种线段的长度。

  正弦值定义

  弦值是在直角三角形中,对边的长比上斜边的长的值。任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值。正弦sinθ也可以理解为顶角度数为θ的单位等腰三角形与单位等腰直角三角形的面积之比。

  sin30°=1╱2,sin45°=√2╱2,sin60°=√3╱2,sin90°=1,sin180°=0,sin0°=0,sin270°=-1

  什么是余弦

  cos是cosine的简写,表示余弦函数(邻边比斜边),古代说法,正弦是股与例,古代说的“勾三股四弦五”中的“弦”,就是直角三角形中的斜边.股就是人的大腿,长长的,古人称直角三角形中长的那个直角边为“股”;正方的直角三角形,应是大腿站直。正弦是股与弦的比例,余弦是余下的那条直角边与弦的比例。

...

等差数列求和公式有什么

等差数列 求和公式 等差数列求和公式

  等差数列的求和公式有什么?大家还清楚吗,不了解的话,快来小编这里瞧瞧。下面是由留学群小编为大家整理的“等差数列求和公式有什么”,仅供参考,欢迎大家阅读。

  等差数列求和公式有什么

  1、an=a1+(n-1)d。前n项和公式为:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2 。

  2、等差数列是指从第二项起,每一项与它的前一项的差等于同一个常数的一种数列,常用A、P表示。这个常数叫做等差数列的公差,公差常用字母d表示。

  拓展阅读:等差数列求和公式

  等差数列求和公式是(首项+末项)×项数/2,数列求和对按照一定规律排列的数进行求和。常见的方法有公式法、错位相减法、倒序相加法、分组法、裂项法、数学归纳法、通项化归、并项求和等,属于高中代数的内容,在高考及各种数学竞赛中占据重要的部分。

  以下介绍常见计算方法所需要的公式:

  公式法:等差数列求和公式是(首项+末项)×项数/2。

  错位相减法:适用于通项公式为等差的一次函数乘以等比的数列形式(等差等比数列相乘)。

  倒序相加法:这是推导等差数列的前n项和公式时所用的方法,具体推理过程

  Sn =a1+ a2+ a3+...... +an

  Sn =an+ an-1+an-2...... +a1

  上下相加得Sn=(a1+an)n/2

  分组法:有一类数列,既不是等差数列,也不是等比数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并即可。

  裂项相消法:适用于分式形式的通项公式,把一项拆成两个或多个的差的形式,即an=f(n+1)-f(n),然后累加时抵消中间的许多项。

...

行测数量关系:等差数列

2020行测 行测等差数列 等差数列公式

  做了许多行测模拟题还是没有有效的提升自己的分数?那是你没有掌握一些技巧和重点,下面由留学群小编为你精心准备了“行测数量关系:等差数列”,持续关注本站将可以持续获取更多的考试资讯!

  行测数量关系:等差数列

  在行测数量关系考试中,总有考生觉得难,想腾出时间给其他专项,但数量关系是考试的重难点,不是所有题型都是难点。在数量关系的考察中,“计算问题”也是学习的重点,等差数列也是其中高频考点,其实这个部分并不难。只要大家掌握公式,灵活运用,许多问题迎刃而解。下面为大家说说等差数列那些事。

  一、定义

  如果一个数列从第二项起,每一项与它的前一项的差,都等于同一个常数,这个数列就叫做等差数列。这个常数叫做等差数列的公差,公差常用字母d表示。

  二、知识铺垫

  三、经典例题

  【例题1】某成衣厂对9名缝纫工进行技术评比,9名工人的得分恰好成等差数列,9人的平均得分是86分,前5名工人的得分之和是460分,那么前7名工人的得分之和是多少?

  A.602 B.623 C.627 D.631

  【解析】B.因得分为等差数列,故等差数列的中间项即为这几个数的平均数。根据“9人的平均得分是86分”,易知第五名的得分为86分。根据“前5名工人的得分之和是460分”,可知前五名的平均分为460÷5=92分,故第三名为92分。因第三名与第五名差了6,则2倍的公差为6,故第四名为89分。所以,前七名的得分之和为7×89=623。答案为B选项。

  【例题2】某学校在400米跑道上举行万米长跑活动,为鼓励学生积极参与,制定了积分规则:每跑满半圈积1分,此外,跑满1圈加1分,跑满2圈加2分,跑满3圈加3分……以此类推。那么坚持跑完一万米的同学一共可以得到的积分是多少分??

  A.325 B.349 C.350 D.375

  【解析】D.根据“每跑满半圈积1分”,1万米即为25圈,50个半圈,每个半圈积一分,则得分为50分。根据“跑满1圈加1分,跑满2圈加2分,跑满3圈加3分……”,可知,跑完25圈的累计积分为,公差为1的等差数列的前25项之和。故得分为

  。所以,总得分为325+50=375分,答案为D选项。

  【例题3】某一天,小李发现台历已经有一周没有翻了,就一次性翻了七张,这七天的日期数加起来恰好是77,请问这一天是几号?

  A.13 B.14 C.15 D.17

推荐更多