留学群专题频道数学知识点总结归纳栏目,提供与数学知识点总结归纳相关的所有资讯,希望我们所做的能让您感到满意!

初中数学知识点总结归纳(精选)

数学知识点归纳 精选初中数学知识点总结

  师者,传道受业解惑也。一般老师们都会关注自己上课的教学行为,从而课后整理出教学笔记。教学笔记可以帮助老师归纳总结教学经验,小编特地为大家精心收集和整理了“初中数学知识点总结归纳(精选)”,希望能对您有所帮助,请收藏。

初中数学知识点总结归纳(精选)【篇一】

  一、基本知识

  一、数与代数

  A、数与式:

  1、有理数:①整数→正整数,0,负整数;

  ②分数→正分数,负分数

  数轴:①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。

  ②任何一个有理数都可以用数轴上的一个点来表示。

  ③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。

  ④数轴上两个点表示的数,右边的总比左边的大。正数大于0,负数小于0,正数大于负数。

  绝对值:①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。

  ②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。两个负数比较大小,绝对值大的反而小。

  有理数的运算:带上符号进行正常运算。

  加法:

  ①同号相加,取相同的符号,把绝对值相加。

  ②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

  ③一个数与0相加不变。

  减法:减去一个数,等于加上这个数的相反数。

  乘法:①两数相乘,同号得正,异号得负,绝对值相乘。

  ②任何数与0相乘得0。

  ③乘积为1的两个有理数互为倒数。

  除法:①除以一个数等于乘以一个数的倒数。

  ②0不能作除数。

  乘方:求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数或指数。

  混合顺序:先算乘法,再算乘除,最后算加减,有括号要先算括号里的。

  2、实数

  无理数

  无理数:无限不循环小数叫无理数,例如:π=3.1415926…

  平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

  ②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

  ③一个正数有2个平方根;0的平方根为0;负数没有平方根。

  ④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

  立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

  ②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

  ③求一个数A的立方根的运算叫开立方,其中A叫做被开方数。

  实数:①实数分有理数和无理数。

  ②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样;

  ③每一个实数都可以在数轴上的一个点来表示。

  3、代数式

  代数式:单独一个数或者一个字母也是代数式。

  合并同...

与数学知识点总结归纳相关的实用资料

初中数学知识点总结归纳(完整版)

数学知识归纳 初中数学总结 初中数学知识梳理完整版

  很多同学在复习初中数学时,因为没有对之前的知识进行梳理记忆,导致整体的复习效率不高。下面是由留学群编辑为大家整理的“初中数学知识点总结归纳(完整版)”,仅供参考,欢迎大家阅读本文。

  初中数学知识点总结归纳

  1、菱形的定义 :有一组邻边相等的平行四边形叫做菱形。

  2、菱形的性质:⑴ 矩形具有平行四边形的一切性质;

  ⑵ 菱形的四条边都相等;

  ⑶ 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

  ⑷ 菱形是轴对称图形。

  提示:利用菱形的性质可证得线段相等、角相等,它的对角线互相垂直且把菱形分成四个全等的直角三角形,由此又可与勾股定理联系,可得对角线与边之间的关系,即边长的平方等于对角线一半的平方和。

  3、因式分解定义:把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

  4、因式分解要素:①结果必须是整式②结果必须是积的形式③结果是等式④因式分解与整式乘法的关系:m(a+b+c)

  5、公因式:一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

  6、公因式确定方法:①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

  7、提取公因式步骤:①确定公因式。②确定商式③公因式与商式写成积的形式。

  8、平方根表示法:一个非负数a的平方根记作,读作正负根号a。a叫被开方数。

  9、中被开方数的取值范围:被开方数a≥0

  10、平方根性质:①一个正数的平方根有两个,它们互为相反数。②0的平方根是它本身0。③负数没有平方根开平方;求一个数的平方根的运算,叫做开平方。

  11、平方根与算术平方根区别:定义不同、表示方法不同、个数不同、取值范围不同。

  12、联系:二者之间存在着从属关系;存在条件相同;0的算术平方根与平方根都是0

  13、含根号式子的意义:表示a的平方根,表示a的算术平方根,表示a的负的平方根。

  14、求正数a的算术平方根的方法;

  完全平方数类型:①想谁的平方是数a。②所以a的平方根是多少。③用式子表示。

  求正数a的算术平方根,只需找出平方后等于a的正数。

  初中数学重点知识归纳

  1、一元二次方程解法:

  (1)配方法:(X±a)²=b(b≥0)注:二次项系数必须化为1

  (2)公式法:aX²+bX+C=0(a≠0)确定a,b,c的值,计算b²-4ac≥0

  若b²-4ac>0则有两个不相等的实根,若b²-4ac=0则有两个相等的实根,若b²-4ac<0则无解

  若b²-4ac≥0则用公式X=-b±√b²-4ac/2a注:必须化为一般形式

  (3)分解因式法

  ①提公因式法:ma+mb=0→m(a+b)=0

  平方差公式:a²-b²=0→(a+b)(a-b)=0

  ②运用公式法:

  完全平方公式:a²±2ab+b²=0→(a±b)²=0

  ③十字相乘法

  2、锐角三角函数定义...

与数学知识点总结归纳相关的中考数学

高二下学期数学知识点总结归纳

高二数学知识总结 高二下学期知识整理 高二下册数学知识点归纳

  有很多同学在复习高二下学期数学时,因为之前没有做过系统的总结,导致复习知识时整体效率低下。下面是由留学群编辑为大家整理的“高二下学期数学知识点总结归纳”,仅供参考,欢迎大家阅读本文。

  高二数学下学期知识点1

  极值的定义:

  (1)极大值:一般地,设函数f(x)在点x0附近有定义,如果对x0附近的所有的点,都有f(x)

  (2)极小值:一般地,设函数f(x)在x0附近有定义,如果对x0附近的所有的点,都有f(x)>f(x0),就说f(x0)是函数f(x)的一个极小值,记作y极小值=f(x0),x0是极小值点。

  极值的性质:

  (1)极值是一个局部概念,由定义知道,极值只是某个点的函数值与它附近点的函数值比较是或最小,并不意味着它在函数的整个的定义域内或最小;

  (2)函数的极值不是的,即一个函数在某区间上或定义域内极大值或极小值可以不止一个;

  (3)极大值与极小值之间无确定的大小关系,即一个函数的极大值未必大于极小值;

  (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点,而使函数取得值、最小值的点可能在区间的内部,也可能在区间的端点。

  求函数f(x)的极值的步骤:

  (1)确定函数的定义区间,求导数f′(x);

  (2)求方程f′(x)=0的根;

  (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查f′(x)在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号即都为正或都为负,则f(x)在这个根处无极值。

  高二数学下学期知识点2

  1.定义法:

  判断B是A的条件,实际上就是判断B=>A或者A=>B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可。

  2.转换法:

  当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。

  3.集合法

  在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:

  若A?B,则p是q的充分条件。

  若A?B,则p是q的必要条件。

  若A=B,则p是q的充要条件。

  若A?B,且B?A,则p是q的既不充分也不必要条件。

  高二数学下学期知识点3

  一、定义与定义式:

  自变量x和因变量y有如下关系:

  y=kx+b

  则此时称y是x的一次函数。

  特别地,当b=0时,y是x的正比例函数。

  即:y=kx(k为常数,k≠0)

  二、一次函数的性质:

  1.y的变化值与对应的x的变化值成正比例,比值为k

  即:y=kx+b(k为任意不为零的实数b取任何实数)

  2.当x=0时,b为函数在y轴上的截距。

  三、一次函数的图像及性质:

  1.作法与图形:通过如下3...

与数学知识点总结归纳相关的高考数学

九年级数学知识点总结归纳(完整版)

九年级数学总结 初中数学知识归纳 数学知识点归纳完整版

  初三也是人生阶段中比较重要的一年,数学知识一定要掌握好,才能不拖其它科目的后腿,下面是由留学群编辑为大家整理的“九年级数学知识点总结归纳(完整版)”,仅供参考,欢迎大家阅读本文。

  九年级数学知识点总结归纳(完整版)

  一元一次方程:

  ①在一个方程中,只含有一个未知数,并且未知数的指数是1,

  1、这样的方程叫一元一次方程。

  ②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

  解一元一次方程的步骤:

  去分母,移项,合并同类项,未知数系数化为1。

  二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

  二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

  解二元一次方程组的方法:代入消元法/加减消元法。

  2、不等式与不等式组

  不等式:

  ①用符号”=“号连接的式子叫不等式。

  ②不等式的两边都加上或减去同一个整式,不等号的方向不变。

  ③不等式的两边都乘以或者除以一个正数,不等号方向不变。

  ④不等式的两边都乘以或除以同一个负数,不等号方向相反。

  不等式的解集:

  ①能使不等式成立的未知数的值,叫做不等式的解。

  ②一个含有未知数的不等式的所有解,组成这个不等式的解集。

  ③求不等式解集的过程叫做解不等式。

  一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的次数是1的不等式叫一元一次不等式。

  一元一次不等式组:

  ①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。

  ②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  ③求不等式组解集的过程,叫做解不等式组。

  3、函数

  变量:因变量,自变量。在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。

  一次函数:

  ①若两个变量C,D间的关系式可以表示成D=KC+B(B为常数,K不等于0)的形式,则称D是C的一次函数。

  ②当B=0时,称D是C的正比例函数。

  初三数学上册知识点归纳

  1.数的分类及概念数系表:

  说明:分类的原则:1)相称(不重、不漏)2)有标准

  2.非负数:正实数与零的统称。(表为:a0)

  性质:若干个非负数的和为0,则每个非负数均为0。

  3.倒数:

  ①定义及表示法

  ②性质:A.a1/a(a1);B.1/a中,aC.0

  4.相反数:

  ①定义及表示法

  ②性质:A.a0时,aB.a与-a在数轴上的位置;C.和为0,商为-1。

与数学知识点总结归纳相关的中考数学

七年级数学知识点总结归纳大全

初一数学知识点 七年级数学知识总结 初中数学知识总结归纳

  经过一年的学习,你掌握了哪些知识点呢,一起来查漏补缺吧!下面是由留学群编辑为大家整理的“七年级数学知识点总结归纳大全”,仅供参考,欢迎大家阅读本文。

  七年级数学知识点总结归纳大全

  七年级数学知识点总结1

  1.有理数:

  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

  (2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

  4.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:

  绝对值的问题经常分类讨论;

  (3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,

  5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.

  七年级数学知识点总结2

  二元一次方程组

  1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.

  2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.

  3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).

  4.二元一次方程组的解法:

  (1)代入消元法;(2)加减消元法;

  (3)注意:判断如何解简单是关键.

  ※5.一次方程组的应用:

  (1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解

  (2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

  (3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.

  一元一次不等式(组)

  1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.

  2.不等式的基本性质:

  不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

  不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;<...

与数学知识点总结归纳相关的中考数学

初一数学知识点总结归纳大全

初一数学知识点归纳 七年级数学知识总结大全 初一数学知识梳理

  很多同学在复习初一数学时找不到重点,因为没有做过系统的总结,导致复习效率不高。下面是由留学群编辑为大家整理的“初一数学知识点总结归纳大全”,仅供参考,欢迎大家阅读本文。

  七年级数学知识点总结

  1.有理数:

  (1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;π不是有理数;

  (2)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

  2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

  4.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2)绝对值可表示为:

  绝对值的问题经常分类讨论;

  (3)a|是重要的非负数,即|a|≥0;注意:|a|?|b|=|a?b|,

  5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.

  七年级数学知识点总结

  二元一次方程组

  1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.

  2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.

  3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).

  4.二元一次方程组的解法:

  (1)代入消元法;(2)加减消元法;

  (3)注意:判断如何解简单是关键.

  ※5.一次方程组的应用:

  (1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解

  (2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;

  (3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.

  一元一次不等式(组)

  1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.

  2.不等式的基本性质:

  不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;

  不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;

  不等式的基本性质3:不等式两边都乘以(或除以)同一个负数...

与数学知识点总结归纳相关的中考数学

小学数学知识点总结归纳大全

小学数学知识点归纳 小升初数学知识总结大全 小学数学重难点知识梳理

  小学数学是学生今后学习数学的基础,所以这个基础一定要坚实。下面是由留学群编辑为大家整理的“小学数学知识点总结归纳大全”,仅供参考,欢迎大家阅读本文。

  一年级的知识点及重难点

  (一)数与计算

  (1)20以内数的认识。加法和减法。

  数数。数的组成、顺序、大小、读法和写法。加法和减法。连加、连减和加减混合运算。

  (2)100以内数的认识。加法和减法。数数。个位、十位。数的顺序、大小、读法和写法。

  两位数加、减整十数和两位数加、减一位数的口算。两步计算的加减式题。

  (二)量与计量钟面的认识(整时)。人民币的认识和简单计算。

  (三)几何初步知识

  长方体、正方体、圆柱和球的直观认识。

  长方形、正方形、三角形和圆的直观认识。

  (四)应用题

  比较容易的加法、减法一步计算的应用题。 多和少的应用题(抓有效信息的能力)

  (五)实践活动

  选择与生活密切联系的内容。例如根据本班男、女生人数,每组人数分布情况,想到哪些数学问题。

  二年级的知识点和重难点

  (一)数与计算

  (1)两位数加、减两位数。 ? 两位数加、减两位数。加、减法竖式。两步计算的加减式题。

  (2)表内乘法和表内除法。 ? 乘法的初步认识。乘法口诀。乘法竖式。除法的初步认识。用乘法口诀求商。除法竖式。有余数除法。两步计算的式题。

  (3)万以内数的读法和写法。 ? 数数。百位、千位、万位。数的读法、写法和大小比较。

  (4)加法和减法。 ?加法,减法。连加法。加法验算,用加法验算减法。

  (5)混合运算。 ? 先乘除后加减。两步计算式题。小括号。

  (二)量与计量

  时、分、秒的认识。

  米、分米、厘米的认识和简单计算。

  千克(公斤)的认识

  (三)几何初步知识

  直线和线段的初步认识。 ? 角的初步认识。直角。

  (四)应用题

  加法和减法一步计算的应用题。 ? 乘法和除法一步计算的应用题。 ?比较容易的两步计算的应用题。

  (五)实践活动

  与生活密切联系的内容。例如调查家中本周各项消费的开支情况,想到哪些数学问题。

  三年级知识点和重难点

  (一)数与计算

  (1)一位数的乘、除法。一个乘数是一位数的乘法(另一个乘数一般不超过三位数)。0的乘法。连乘。除数是一位数的除法。0除以一个数。用乘法验算除法。连除。

  (2)两位数的乘、除法。一个乘数是两位数的乘法(另一个乘数一般不超过三位数)。乘数末尾有0的简便算法。乘法验算。除数是两位数的除法。连乘、连除的简便算法。

  (3)四则混合运算。两步计算的式题。小括号的使用。

  (4)分数的初步认识。分数的初步认识,读法和写法。看图比较分数的大小。简单的同分母分数加、减法。

  (二)量与计量千米(公里)、毫米的认识和简单计算。吨、克的认识和简单计算。

  (三)几何初步知识长方形...

与数学知识点总结归纳相关的实用资料

初二数学知识点总结归纳大全

初二数学知识归纳 初二数学知识点总结 数学知识点总结大全

  很多同学在复习初二数学时,因为之前没有做过系统的总结,导致复习知识点分散,复习效率低下。下面是由留学群编辑为大家整理的“初二数学知识点总结归纳大全”,仅供参考,欢迎大家阅读本文。

  初二数学知识点总结归纳大全

  第一章 勾股定理

  定义:如果直角三角形两条直角边分别为a,b,斜边为c,即直角三角形两直角边的平方和等于斜边的平方。

  判定:如果三角形的三边长a,b,c满足a +b = c ,那么这个三角形是直角三角形。 定义:满足a +b =c 的三个正整数,称为勾股数。

  第二章 实数

  定义:任何有限小数或无限循环小数都是有理数。无限不循环小数叫做无理数 (有理数总可以用有限小数或无限循环小数表示)

  一般地,如果一个正数x的平方等于a,那么这个正数x就叫做a的算术平方根。 特别地,我们规定0的算术平方根是0。

  一般地,如果一个数x的平方等于a,那么这个数x就叫做a的平方根(也叫二次方根) 一个正数有两个平方根;0只有一个平方根,它是0本身;负数没有平方根。 求一个数a的平方根的运算,叫做开平方,其中a叫做被开方数。

  一般地,如果一个数x的立方等于a,那么这个数x就叫做a的立方根(也叫做三次方根)。 正数的立方根是正数;0的立方根是0;负数的立方根是负数。 求一个数a的立方根的运算,叫做开立方,其中a叫做被开方数。 有理数和无理数统称为实数,即实数可以分为有理数和无理数。

  每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。即实数和数轴上的点是一一对应的。

  在数轴上,右边的点表示的数比左边的点表示的数大。

  第三章 图形的平移与旋转

  定义:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移不改变图形的形状和大小。

  经过平移,对应点所连的线段平行也相等;对应线段平行且相等,对应角相等。

  在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转,这个定点称旋转中心,转动的角称为旋转角。旋转不改变图形的大小和形状。

  任意一对对应点与旋转中心的连线所成的角都是旋转角,对应点到旋转中心的距离相等。

  第四章 四边形性质探索

  定义:若两条直线互相平行,则其中一条直线上任意两点到另一条直线的距离相等,这个距离称为平行线之间的距离。

  平行四边形: 两组对边分别平行的四边形.。 对边相等,对角相等,对角线互相平分。 两组对边分别平行的四边形是平行四边形,两组对边分别相等的四边形是平行四边形,两条对角线互相平分的四边形是平行四边形,一组对边平行且相等的四边形是平行四边形

  菱形 :一组邻边相等的平行四边形 „„(平行四边形的性质)。四条边都相等,两条对角线互相垂直平分,每一条对角线平分一组对角。 一组邻边相等的平行四边形是菱形,对角线互相垂直的平行四边形是菱形,四条边都相等的四边形是菱形。

  矩形: 有一个内角是直角的平行四边形 „„(平行四边形的性质)。对角线相等,四个角都是直角。 有一个内角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形。

  正方形: 一组邻边相等的矩形。 正方形具有平行四边形、菱形、矩形的一切性...

与数学知识点总结归纳相关的中考数学

初一数学知识点总结归纳大全(实用)

初一数学知识归纳 数学知识点复习总结大全

  复习初一数在学知识时,如果没有系统的总结,复习效率也会降低很多。下面是由留学群编辑为大家整理的“初一数学知识点总结归纳大全(实用) ”,仅供参考,欢迎大家阅读本文。

  初一数学知识点总结归纳大全(实用)

  数轴知识点

  (1)数轴的概念:规定了原点、正方向、单位长度的直线叫做数轴。

  数轴的三要素:原点,单位长度,正方向。

  (2)数轴上的点:所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数。(一般取右方向为正方向,数轴上的点对应任意实数,包括无理数.)

  (3)用数轴比较大小:一般来说,当数轴方向朝右时,右边的数总比左边的数大。

  相反数知识点

  (1)相反数的概念:只有符号不同的两个数叫做互为相反数。

  (2)相反数的意义:掌握相反数是成对出现的,不能单独存在,从数轴上看,除0外,互为相反数的两个数,它们分别在原点两旁且到原点距离相等。

  (3)多重符号的化简:与“+”个数无关,有奇数个“﹣”号结果为负,有偶数个“﹣”号,结果为正。

  (4)规律方法总结:求一个数的相反数的方法就是在这个数的前边添加“﹣”,如a的相反数是﹣a,m+n的相反数是﹣(m+n),这时m+n是一个整体,在整体前面添负号时,要用小括号。

  三角形中位线定理的作用

  位置关系:可以证明两条直线平行。

  数量关系:可以证明线段的倍分关系。

  常用结论:任一个三角形都有三条中位线,由此有:

  结论1:三条中位线组成一个三角形,其周长为原三角形周长的一半。

  结论2:三条中位线将原三角形分割成四个全等的三角形。

  结论3:三条中位线将原三角形划分出三个面积相等的平行四边形。

  结论4:三角形一条中线和与它相交的中位线互相平分。

  结论5:三角形中任意两条中位线的夹角与这夹角所对的三角形的顶角相等。

  注意:重要辅助线:⑴中点配中点构成中位线;⑵加倍中线;⑶添加辅助平行线。

  等腰三角形的性质

  (1)等腰三角形的性质定理及推论:

  定理:等腰三角形的两个底角相等(简称:等边对等角)

  推论1:等腰三角形顶角平分线平分底边并且垂直于底边。即等腰三角形的顶角平分线、底边上的中线、底边上的高重合。

  推论2:等边三角形的各个角都相等,并且每个角都等于60°。

  (2)等腰三角形的其他性质:

  ①等腰直角三角形的两个底角相等且等于45°。

  ②等腰三角形的底角只能为锐角,不能为钝角(或直角),但顶角可为钝角(或直角)。

  ③等腰三角形的三边关系:设腰长为a,底边长为b,则

  ④等腰三角形的三角关系:设顶角为顶角为∠A,底角为∠B、∠C,则∠A=180°-2∠B,∠B=∠C。

  三角形全等的判定定理

  (1)边角边定理:有两边和它们的夹角对应相等的...

与数学知识点总结归纳相关的中考数学

高一数学知识点总结归纳

高一数学知识点 数学知识点总结归纳 高一数学知识点归纳

  在学习过程中知识的总结往往很重要,那么高一数学知识点归纳有哪些呢?下面是由留学群小编为大家整理的“高一数学知识点总结归纳”,仅供参考,欢迎大家阅读。

  高一数学知识点归纳总结

  第一章:集合与函数概念

  一、集合有关概念

  1.集合的含义

  2.集合的中元素的三个特性:

  (1)元素的确定性如:世界上的山;

  (2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y};

  (3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合。

  3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋};

  (1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5};

  (2)集合的表示方法:列举法与描述法。

  注意:常用数集及其记法:XKb1.Com。

  非负整数集(即自然数集)记作:N;

  正整数集:N*或N+;

  整数集:Z;

  有理数集:Q;

  实数集:R;

  1)列举法:{a,b,c……};

  2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2};

  3)语言描述法:例:{不是直角三角形的三角形};

  4)Venn图:

  4、集合的分类:

  (1)有限集含有有限个元素的集合;

  (2)无限集含有无限个元素的集合;

  (3)空集不含任何元素的集合例:{x|x2=-5}。

  二、集合间的基本关系

  1.“包含”关系—子集

  注意:有两种可能。

  (1)A是B的一部分;

  (2)A与B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA;

  2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实。

  例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”

  即:

  ①任何一个集合是它本身的子集。

  ②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)

  ③如果AíB,BíC,那么AíC;

  ④如果AíB同时BíA那么A=B;

  3.不含任何元素的集合叫做空集,记为Φ;

  规定:空集是任何集合的子集,空集是任何非空集合的真子集。

  4.子集个数:

  有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集

  三、集合的运算

  运算类型交集并集补集;

  定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB};

  由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB});

  第二章:基...

与数学知识点总结归纳相关的实用资料

推荐更多