留学群专题频道数学函数知识栏目,提供与数学函数知识相关的所有资讯,希望我们所做的能让您感到满意!

高中数学函数知识点归纳

高中数学 数学函数知识 高中函数知识点

  高中数学函数知识点同学们归纳总结过吗,没有的话,快来小编这里瞧瞧。下面是由留学群小编为大家整理的“高中数学函数知识点归纳”,仅供参考,欢迎大家阅读。

  高中数学函数知识点归纳

  (一)、映射、函数、反函数

  1、对应、映射、函数三个概念既有共性又有区别,映射是一种特殊的对应,而函数又是一种特殊的映射.

  2、对于函数的概念,应注意如下几点:

  (1)掌握构成函数的三要素,会判断两个函数是否为同一函数.

  (2)掌握三种表示法——列表法、解析法、图象法,能根实际问题寻求变量间的函数关系式,特别是会求分段函数的解析式.

  (3)如果y=f(u),u=g(x),那么y=f[g(x)]叫做f和g的复合函数,其中g(x)为内函数,f(u)为外函数.

  3、求函数y=f(x)的反函数的一般步骤:

  (1)确定原函数的值域,也就是反函数的定义域;

  (2)由y=f(x)的解析式求出x=f-1(y);

  (3)将x,y对换,得反函数的习惯表达式y=f-1(x),并注明定义域.

  注意①:对于分段函数的反函数,先分别求出在各段上的反函数,然后再合并到一起.

  ②熟悉的应用,求f-1(x0)的值,合理利用这个结论,可以避免求反函数的过程,从而简化运算.

  (二)、函数的解析式与定义域

  1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:

  (1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;

  (2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:

  ①分式的分母不得为零;

  ②偶次方根的被开方数不小于零;

  ③对数函数的真数必须大于零;

  ④指数函数和对数函数的底数必须大于零且不等于1;

  ⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.

  应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).

  (3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.

  已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x∈[a,b],此时f(x)的定义域,即g(x)的值域.

  2、求函数的解析式一般有四种情况

  (1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.

  (2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.

  (3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这...

与数学函数知识相关的高考数学

推荐更多