留学群专题频道初一到初三数学知识点栏目,提供与初一到初三数学知识点相关的所有资讯,希望我们所做的能让您感到满意!

初三数学知识点归纳

初三数学知识 数学知识归纳 初中数学知识

  想了解初中数学知识,想提高数学成绩的小伙伴,赶紧过来瞧一瞧吧。下面由留学群小编为你精心准备了“初三数学知识点归纳”,本文仅供参考,持续关注本站将可以持续获取更多的知识点!

  初三数学知识点归纳

  一、有理数。

  1、大于0的数叫做正数。

  2、在正数前面加上负号“-”的数叫做负数。

  3、整数和分数统称为有理数。

  4、人们通常用一条直线上的点表示数,这条直线叫做数轴。

  5、在直线上任取一个点表示数0,这个点叫做原点。

  6、一般的,数轴上表示数a的点与原点的距离叫做数a的绝对值。

  7、由绝对值的定义可知:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

  8、正数大于0,0大于负数,正数大于负数。

  9、两个负数,绝对值大的反而小。

  10、有理数加法法则。

  (1)同号两数相加,取相同的符号,并把绝对值相加。

  (2)绝对值不相等的异号两数相加,取绝对值较大的加数的负号,并用较大的绝对值减去较小的绝对值,互为相反数的两个数相加得0。

  (3)一个数同0相加,仍得这个数。

  二、整式的加减。

  1、都是数或字母的积的式子叫做单项式,单独的一个数或一个字母也是单项式。

  2、单项式中的数字因数叫做这个单项式的系数。

  3、一个单项式中,所有字母的指数的和叫做这个单项式的次数。

  4、几个单项的和叫做多项式,其中,每个单项式叫做多项式的项,不含字母的项叫做常数项。

  5、多项式里次数最高项的次数,叫做这个多项式的次数。

  6、把多项式中的同类项合并成一项,叫做合并同类项。

  合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变。

  7、如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。

  8、如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。

  9、一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。

  三、一元一次方程。

  1、列方程时,要先设字母表示未知数,然后根据问题中的相等关系,写出还有未知数的等式——方程。

  2、含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。

  3、分析实际问题中的数量关系,利用其中的等量关系列出方程,是用数学解决实际问题的一种方法。

  4、等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

  5、等式的性质2:等式两边乘同一个数,或除以一个不为0的数,结果仍相等。

  6、把等式一边的某项变号后移到另一边,叫做移项。

  7、应用:行程问题:s=v×t工程问题:工作总量=工作效率×时间。

  盈亏问题:利润=售价-成本利率=利润÷成本×100%。

  售价=标价×折扣数×10%储蓄利润问题:利息=本金×利率×时间。

  ...

与初一到初三数学知识点相关的中考数学

初三数学知识点有哪些

初三数学知识 初三数学知识点 有关初三数学

  初三重要数学知识点有哪些,考生怎么学?不清楚的小伙伴看过来,下面由留学群小编为你精心准备了“初三数学知识点有哪些”仅供参考,持续关注本站将可以持续获取更多的资讯!

初三数学知识点有哪些

  第一章有理数

  一、知识框架

  二、知识概念

  1.有理数:

  (1)凡能写成 形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;p不是有理数;

  (2)有理数的分类: ① ②

  2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

  3.相反数:

  (1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

  (2)相反数的和为0 ? a+b=0 ? a、b互为相反数.

  4.绝对值:

  (1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

  (2) 绝对值可表示为: 或 ;绝对值的问题经常分类讨论;

  5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.

  6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么 的倒数是 ;若ab=1? a、b互为倒数;若ab=-1? a、b互为负倒数.

  7. 有理数加法法则:

  (1)同号两数相加,取相同的符号,并把绝对值相加;

  (2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

  (3)一个数与0相加,仍得这个数.

  8.有理数加法的运算律:

  (1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

  9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

  10 有理数乘法法则:

  (1)两数相乘,同号为正,异号为负,并把绝对值相乘;

  (2)任何数同零相乘都得零;

  (3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.

  11 有理数乘法的运算律:

  (1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

  (3)乘法的分配律:a(b+c)=ab+ac .

  12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数, .

  13.有理数乘方的法则:

  (1)正数的任何次幂都是正数;

  (2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当n为正偶数时: (-a...

与初一到初三数学知识点相关的中考数学

初三数学知识点归纳上册

初三数学 数学知识点归纳 初三数学知识点上册

  许多同学想要了解初三数学的知识点,那么初三数学上册的知识点有哪些呢?下面是由留学群小编为大家整理的“初三数学知识点归纳上册”,仅供参考,欢迎大家阅读。

  初三数学知识点归纳上册

  反比例函数

  1.形如y=k/x(k≠0)或y=kx^-1的函数叫做反比例函数,k叫做反比例系数。它的图像是双曲线。^-1表示负一次。

  2.在函数y=k/x(k≠0),当k>0时,表达式中的想x、y符号相同,点(x,y)在第一、三象限,所以函数y=k/x(k≠0)的图像位于第一、三象限;当k<0时,表达式中的想x、y符号相反,点(x,y)在第二、四象限,所以函数y=k/x(k≠0)的图像位于第二、四象限。

  3.在y=k/x(k≠0)中,当k>0时,在第一象限内,y随着x的增大而减小;若y的值随着x的值的增大而增大,则k的取值范围是k<0。

  4.设P(a,b)是反比例函数y=k/x(k≠0)上任意一点,则ab的值等于k。经过反比例函数上的任意一点P,分别向x轴、y轴作垂线段,则所成的矩形面积为k;过P点向x轴或y轴作垂线段,连接OP,则所成的三角形面积为k/2。

  二次函数

  1.形如y=ax^2+bx+c(a≠0,a、b、c为常数)。的函数叫做二次函数,它的图像是一条抛物线。

  2.二次函数y=ax^2+bx+c(a≠0)的顶点坐标为(-b/2a,4ac-b^2/4a),对称轴是直线x=-b/2a。

  3.对于二次函数y=ax^2+bx+c(a≠0),当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。图像与y轴的交点的坐标是(0,c)。

  4.一元一次方程ax^2+bx+c=0(a≠0)的解,可以看成函数y=ax^2+bx+c(a≠0)的图像与x轴交点的横坐标。

  当b^2-4ac>0时,函数图像与x轴有两个交点。

  当b^2-4ac=0时,函数图像与x轴有一个交点。

  当b^2-4ac<0时,函数图像与x轴没有交点。

  5.当a>0,且x=-b/2a时,函数y=ax^2+bx+c(a≠0)取得最小值,这个值等于4ac-b^2/4a;当a<0,且x=-b/2a时,函数y=ax^2+bx+c(a≠0)取得值,这个值等于4ac-b^2/4a。

  6.抛物线y=ax^2+c(a≠0)的对称轴是y轴。

  7.对于二次函数y=ax^2+bx+c(a≠0),若a,b同号,对称轴在y轴右侧a,b异号,对称轴在y轴左侧。

  8.抛物线y=ax^2+bx+c(a≠0),若a>0,当x≤-b/2a时,y随x的增大而减小;当x≥-b/2a时,y随x的增大而增大。若a<0,当x≤-b/2a时,y随x的增大而增大;当x≥-b/2a时,y随x的增大而减小。

  9.对于抛物线y=a(x-m)^2+k,左右平移时,只与m有关,往左是加,往右是减;上下平移时,只与k有关,往上是加,往下是减。

  相似三角形

  1.如果两个数的比值与另两个数的比值相等,就说这四个数成比例。

  2.如果a/b=c/d,那么ad=bc;如果ad=bc,且bd≠0,那么a/b=c/d;如果a...

初三数学知识点汇总整理2022

2022初三数学知识汇总 初三数学知识点总结归纳 九年级数学重要知识点梳理

  在初三复习数学时,很多同学由于之前没有对知识进行总结梳理导致复习时效率不高。下面是由留学群编辑为大家整理的“初三数学知识点汇总整理2022”,仅供参考,欢迎大家阅读本文。

  初三数学知识点汇总整理2022

  1、垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的2条弧。

  2、逆定理:平分弦不是直径的直径垂直于弦,并且平分弦所对的2条弧。

  3、有关圆周角和圆心角的性质和定理

  ①在同圆或等圆中,如果两个圆心角,两个圆周角,两组弧,两条弦,两条弦心距中有一组量相等,那么他们所对应的其余各组量都分别相等。

  ②一条弧所对的圆周角等于它所对的圆心角的一半。

  直径所对的圆周角是直角。90度的圆周角所对的弦是直径。

  圆心角计算公式:θ=L/2πr×360°=180°L/πr=L/r弧度

  即圆心角的度数等于它所对的弧的度数;圆周角的度数等于它所对的弧的度数的一半。

  ③如果一条弧的长是另一条弧的2倍,那么其所对的圆周角和圆心角是另一条弧的2倍。

  4、有关外接圆和内切圆的性质和定理

  ①一个三角形有唯一确定的外接圆和内?a href=// target=_blank>性病M饨釉苍残氖侨?切胃鞅叽怪逼椒窒叩慕坏悖?饺?切稳?龆サ憔嗬胂嗟?

  ②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。

  ③R=2S△÷LR:内切圆半径,S:三角形面积,L:三角形周长。

  ④两相切圆的连心线过切点连心线:两个圆心相连的直线。

  ⑤圆O中的弦PQ的中点M,过点M任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。

  5、如果两圆相交,那么连接两圆圆心的线段直线也可垂直平分公共弦。

  6、弦切角的度数等于它所夹的弧的度数的一半。

  7、圆内角的度数等于这个角所对的弧的度数之和的一半。

  8、圆外角的度数等于这个角所截两段弧的度数之差的一半。

  9、周长相等,圆面积比长方形、正方形、三角形的面积大。

  10、形如y=k/x(k≠0)或y=kx^—1的函数叫做反比例函数,k叫做反比例系数。它的图像是双曲线。^—1表示负一次。

  11、在函数y=k/x(k≠0),当k>0时,表达式中的想x、y符号相同,点(x,y)在第一、三象限,所以函数y=k/x(k≠0)的图像位于第一、三象限;当k<0时,表达式中的想x、y符号相反,点(x,y)在第二、四象限,所以函数y=k/x(k≠0)的图像位于第二、四象限。

  12、在y=k/x(k≠0)中,当k>0时,在第一象限内,y随着x的增大而减小;若y的值随着x的值的增大而增大,则k的取值范围是k<0。

  13、设P(a,b)是反比例函数y=k/x(k≠0)上任意一点,则ab的值等于k。经过反比例函数上的任意一点P,分别向x轴、y轴作垂线段,则所成的矩形面积为k;过P点向x轴或y轴作垂线段,连接OP,则所成的三角形面积为k/2。

  14、如果两个数的比值与另两个数的比值相等,就说这四个数成比例。

  15、如果a/b=c/d,那么ad=bc;如果ad=bc,且bd≠...

初一数学知识点上册

初一数学 初一数学上册 数学知识点上册

  初一是学生数学知识奠定基础的时期,那么初一上册数学知识点有哪些呢?下面是由留学群小编为大家整理的“初一数学知识点上册”,仅供参考,欢迎大家阅读。

  初一数学知识点上册

  第一章 有理数

  1.1 正数与负数

  在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

  与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

  1.2 有理数

  正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

  整数和分数统称有理数(rational number)。

  通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

  数轴三要素:原点、正方向、单位长度。

  在直线上任取一个点表示数0,这个点叫做原点(origin)。

  只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

  数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

  1.3 有理数的加减法

  有理数加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加。

  2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  3.一个数同0相加,仍得这个数。

  有理数减法法则:减去一个数,等于加这个数的`相反数。

  1.4 有理数的乘除法

  有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

  乘积是1的两个数互为倒数。

  有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

  两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì

  求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

  负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

  把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法。

  从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

  第二章 一元一次方程

  2.1 从算式到方程

  方程是含有未知数的等式。

  方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。

  解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就...

初一数学知识点概括

初一数学知识点 初一知识点

  今天留学群小编为大家概括了一下初一数学知识点,希望对您学习数学有帮助。欢迎查看更多初一知识点。

  第一册

  第一章 有理数

  1.1正数和负数

  以前学过的0以外的数前面加上负号“-”的书叫做负数。

  以前学过的0以外的数叫做正数。

  数0既不是正数也不是负数,0是正数与负数的分界。

  在同一个问题中,分别用正数和负数表示的量具有相反的意义

  1.2有理数

  1.2.1有理数

  正整数、0、负整数统称整数,正分数和负分数统称分数。

  整数和分数统称有理数。

  1.2.2数轴

  规定了原点、正方向、单位长度的直线叫做数轴。

  数轴的作用:所有的有理数都可以用数轴上的点来表达。

  注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。

  ⑵同一根数轴,单位长度不能改变。

  一般地,设是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。

  1.2.3相反数

  只有符号不同的两个数叫做互为相反数。

  数轴上表示相反数的两个点关于原点对称。

  在任意一个数前面添上“-”号,新的数就表示原数的相反数。

  1.2.4绝对值

  一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值。

  一个正数的绝对值是它的本身;一个负数的绝对值是它的相反数;0的绝对值是0。

  在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序,即左边的数小于右边的数。

  比较有理数的大小:⑴正数大于0,0大于负数,正数大于负数。

  ⑵两个负数,绝对值大的反而小。

  1.3有理数的加减法

  1.3.1有理数的加法

  有理数的加法法则:

  ⑴同号两数相加,取相同的符号,并把绝对值相加。

  ⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  ⑶一个数同0相加,仍得这个数。

  两个数相加,交换加数的位置,和不变。

  加法交换律:a+b=b+a

  三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

  加法结合律:(a+b)+c=a+(b+c)

  1.3.2有理数的减法

  有理数的减法可以转化为加法来进行。

  有理数减法法则:

  减去一个数,等于加这个数的相反数。

  a-b=a+(-b)

  1.4有理数的乘除法

  1.4.1有理数的乘法

  有理数乘法法则:

  两数相乘,同号得正,异号得负,并把绝对值相乘。

  任何数同0相乘,都得0。

  乘积是1的两个数互为倒数。

  几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数。<...

初三上册数学知识点归纳

初三上册数学知识点 九年级上册数学知识点

  初三(九年级)上册数学知识点归纳包括二次根式、一元二次方程、旋转、圆、概率初步五章的内容概括,总结了这几个单元的重点内容,是初三同学们和中考考生的必备资料!

  全套教科书包含了课程标准(实验稿)规定的“数与代数”“空间与图形”“统计与概率”“实践与综合应用”四个领域的内容,在体系结构的设计上力求反映这些内容之间的联系与综合,使它们形成一个有机的整体。

  九年级上册包括二次根式、一元二次方程、旋转、圆、概率初步五章内容,学习内容涉及到了《课程标准》的四个领域。本册书内容分析如下:

  第21章 二次根式

  学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。“二次根式” 一章就来认识这种式子,探索它的性质,掌握它的运算。

  在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:

  注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。“二次根式的乘除”一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到

  并运用它们进行二次根式的化简。

  “二次根式的加减”一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。

  第22章 一元二次方程

  学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 —— 一元二次方程。“一元二次方程”一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。

  本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,

  “22.2降次——解一元二次方程”一节介绍配方法、公式法、因式分解法三种解一元二次方程的方法。下面分别加以说明。

  (1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了“公式法”以后,学生对这个内容会有进一步的理解。

  (2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。

  (3)在介绍因式分解法时,...

初一数学知识点归纳总结

初一数学 数学知识点 初一知识点总结

  初一是打下知识基础的好时机,为了帮助同学们更好打下牢固的学习基础。下面是由留学群小编为大家整理的“初一数学知识点归纳总结”,仅供参考,欢迎大家阅读。

  初一数学知识点归纳总结

  初一数学知识点总结1-3章

  第一章 有理数

  1.1 正数与负数

  在以前学过的0以外的数前面加上负号“—”的数叫负数(negative number)。

  与负数具有相反意义,即以前学过的0以外的数叫做正数(positive number)(根据需要,有时在正数前面也加上“+”)。

  1.2 有理数

  正整数、0、负整数统称整数(integer),正分数和负分数统称分数(fraction)。

  整数和分数统称有理数(rational number)。

  通常用一条直线上的点表示数,这条直线叫数轴(number axis)。

  数轴三要素:原点、正方向、单位长度。

  在直线上任取一个点表示数0,这个点叫做原点(origin)。

  只有符号不同的两个数叫做互为相反数(opposite number)。(例:2的相反数是-2;0的相反数是0)

  数轴上表示数a的点与原点的距离叫做数a的绝对值(absolute value),记作|a|。

  一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。两个负数,绝对值大的反而小。

  1.3 有理数的加减法

  有理数加法法则:

  1.同号两数相加,取相同的符号,并把绝对值相加。

  2.绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

  3.一个数同0相加,仍得这个数。

  有理数减法法则:减去一个数,等于加这个数的相反数。

  1.4 有理数的乘除法

  有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。

  乘积是1的两个数互为倒数。

  有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数。

  两数相除,同号得正,异号得负,并把绝对值相除。0除以任何一个不等于0的数,都得0。 mì

  求n个相同因数的积的运算,叫乘方,乘方的结果叫幂(power)。在a的n次方中,a叫做底数(base number),n叫做指数(exponent)。

  负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

  把一个大于10的数表示成a×10的n次方的形式,用的就是科学计数法。

  从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字(significant digit)。

  第二章 一元一次方程

  2.1 从算式到方程

  方程是含有未知数的等式。

  方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程(linear equation with one unknown)。   解方程就是求出使方程中等...

推荐更多