高中常用数学公式有哪些呢?如果没有进行过整理的同学,应该不是很清楚。下面是由留学群小编为大家整理的“高中常用数学公式有哪些”,仅供参考,欢迎大家阅读。
高中常用数学公式有哪些
1 元素与集合的关系:
2 集合 的子集个数共有 个;真子集有 个;非空子集有 个;非空的真子集有 个.
3 二次函数的解析式的三种形式:
(1) 一般式 ;
(2) 顶点式 ;(当已知抛物线的顶点坐标 时,设为此式)
(3) 零点式 ;(当已知抛物线与 轴的交点坐标为 时,设为此式)
(4)切线式: 。(当已知抛物线与直线 相切且切点的横坐标为 时,设为此式)
4 真值表: 同真且真,同假或假
5 常见结论的否定形式;
原结论 反设词 原结论 反设词
是 不是 至少有一个 一个也没有
都是 不都是 至多有一个 至少有两个
大于 不大于 至少有 个 至多有( )个
小于 不小于 至多有 个 至少有( )个
对所有 ,成立 存在某 ,不成立 或 且
对任何 ,不成立 存在某 ,成立 且 或
6 四种命题的相互关系(下图):(原命题与逆否命题同真同假;逆命题与否命题同真同假.)
原命题 互逆 逆命题
若p则q 若q则p
互 互
互 为 为 互
否 否
逆 逆
否 否
否命题 逆否命题
若非p则非q 互逆 若非q则非p
充要条件: (1)、 ,则P是q的充分条件,反之,q是p的必要条件;
(2)、 ,且q ≠> p,则P是q的充分不必要条件;
(3)、p ≠> p ,且 ,则P是q的必要不充分条件;
4、p ≠> p ,且q ≠> p,则P是q的既不充分又不必要条件。
拓展阅读:高中数学解题技巧
为了使回想、联想、猜想的方向更明确,思路更加活泼,进一步提高探索的成效,我们必须掌握一些解题的策略。
一切解题的策略的基本出发点在于“变换”,即把面临的问题转化为一道或几道易于解答的新题,以通过对新题的考察,发现原题的解题思路,最终达到解决原题的目的。
基于这样的认识,常用的解题策略有:熟悉化、简单化、直观化、特殊化、一般化、整体化、间接化等。
一、 熟悉化策略
所谓熟悉化策略,就是当我们面临的是一道以前没有接触过的陌生题目时,要设法把它化为曾经解过的或比较熟悉的题目,以便充分利用已有的知识、经验或解题模式,顺利地解出原题。
一般说来,对于题目的熟悉程度,取决于对题目自身结构的认识和理解。从结构上来分析,任何一道解答题,都包含条件和结论(或问题)两个方面。因此,要把陌生题转化为熟悉题,可以在变换题目的条件、结论(或问题)以及它们的联系方式上多下功夫。
常用的途径有:
(一)、充分联想回忆基本知识和题型:
按照波利亚的观点,在解决问题之前,我们应充分联想和回...