八年级上册数学课件【篇1】
因为乘法公式实际上是整式乘法的特殊情况,因此,呈现方式是直接推演.所以本节教学过程以学生做自主活动为主线来组织,根据学生的探究情况补充讲解.乘法公式有平方差公式和完全平方公式两部分,本节课讲解完全平方公式.
首先让学生自编几道符合平方差公式结构的计算题,目的是辨认题目的结构特征.然后引入完全平方公式,让学生用文字概括公式的内容,培养抽象的数字思维能力.接着从几何背景更为形象地认识两数和的平方公式,最后举例分析如何正确使用完全平方公式,适时练习并总结,从实践到理论再回到实践,以指导今后的解题.
1.经历对完全平方公式的探索和推导,进一步发展符号(字母)的识别运用能力和推理能力
情感态度价值观:
难点:掌握完全平方公式的结构特征,理解字母表示的广泛含义.
相乘的两个多项式的项有什么特点?它们相乘的结果又有什么规律?
学生活动:计算 , ,两名学生板演,其他学生在练习本上完成,然后说出答案,得出公式.
或合并为:
教师引导学生用文字概括公式.
方法:由学生概括,教师给予肯定、否定或更正,同时板书.
两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍.
看谁算得快部分,一是复习乘法公式,二是找规律,总结完全平方公式特征.
证明:(a-b)2=2=a2+2a(-b)+(-b)2=a2-2ab+b2
(2)积中两项为两数的平方和;
(3)另一项是两数积的2倍,且与乘式中间的符号相同.
1.首平方,尾平方,积的2倍放中央.
图Ⅰ、Ⅱ、Ⅲ、Ⅳ的面积分别为 .
(2)图B中,正方形的面积为 ,
Ⅲ的面积为 ,
Ⅰ、Ⅱ、Ⅳ的面积和为 ,
用B、Ⅰ、Ⅱ、Ⅳ的面积表示Ⅲ的面积 .
【教法说明】利用图形讲解,增强学生对公式的直观理解,以便更好地掌握公式,同时也培养学生数形结合的数学思想.
教师讲解:在 中,把x看成a,把3y看成b,则 就可用完全平方公式来计算,即
【教法说明】 引例的目的在于使学生进一步理解公式的结构,为运用公式打好基础.
学生活动:学生独立在练习本上尝试解题,2个学生板演.
【教法说明】 让学生先模仿公式解题,学生可能会出现一些问题,这也正是学生对公式理解、应用和熟练程度上存在的需要解决的问题,反馈后要紧扣公式,重点讲解,达到解决问题的目的,关于例2中(3)的计算,可对照公式直接计算,也可变形成 ,然后再进行计算,同时也可训练学生灵活运用学过的知识的能力.
(3)(补充)例3 你觉得怎样做简单:
(a+b)²与(-a-b)²相等吗?
(a-b)²与(b-a)²相等吗?
(a-b)²与a²-b²相等吗?
学生活动:学生在练习本上完成,然后同学互评,教师抽看结果,练习中存在的共性问题要集中解决.
运用完全平方公式计算:
(1)有甲、乙、丙、丁四名同学,共同计算,以下是他们的计算过程,请判断他们的计算是否正确,不正确的...