留学群专题频道中考奥数函数解析式栏目,提供与中考奥数函数解析式相关的所有资讯,希望我们所做的能让您感到满意!

中考奥数:求函数解析式的几种常用方法

中考数学 中考奥数 中考奥数函数解析式

  中考奥数:求函数解析式的几种常用方法


  [题型一]配凑法

  例1.已知f(■+1)=x+2■,求f(x)。

  分析:函数的解析式y=f(x)是自变量x确定y值的关系式,其实质是对应法则f:x→y,因此解决这类问题的关键是弄清对“x”而言,“y”是怎样的规律。

  解:∵f(■+1)=x+2■=(■+1)2-1

  (■+11)

  ∴f(x)=x2-1(x1)

  小结:此种解法为配凑法,通过观察、分析,将右端“x+2■”变为接受对象“■+1”的表达式,即变为含(■+1)的表达式,这种解法对变形能力、观察能力有一定的要求。

  [题型二]换元法

  例2.已知f(1-cosx)=sin2x,求f(x)。

  分析:视1-cosx为一整体,应用数学的整体化思想,换元即得。

  解:设t=1-cosx

  ∵-1cosx1 ∴01-cosx2 即0t2

  ∴cosx=1-t

  ∴sin2x=1-cos2x=1-(1-t)2=-t2+2t

  ∴f(t)=-t2+2t(0t2)

  即f(x)=-x2+2x(0x2)

  小结:①已知f[g(x)]是关于x的函数,即f[g(x)]=F(x),求f(x)的解析式,通常令g(x)=t,由此能解出x=(t),将x=(t)代入f[g(x)]=F(x)中,求得f(t)的解析式,再用x替换t,便得f(x)的解析式。

  注意:换元后要确定新元t的取值范围。

  ②换元法就是通过引入一个或几个新的变量来替换原来的某些变量的解题方法,它的基本功能是:化难为易、化繁为简,以快速实现未知向已知的转换,从而达到顺利解题的目的。常见的换元法是多种多样的,如局部换元、整体换元、三角换元、分母换元等,它的应用极为广泛。

  [题型三]待定系数法

  例3.设二次函数f(x)满足f(x+2)=f(2-x),且f(x)=0的两实根平方和为10,图象过点(0,3),求f(x)的解析式。

  分析:由于f(x)是二次函数,其解析式的基本结构已定,可用待定系数法处理。

  解:设f(x)=ax2+bx+c(a≠0)

  由f(x+2)=f(2-x)可知,该函数图象关于直线x=2对称

  ∴-■=2,即b=-4a……①

  又图象过点(0,3) ∴c=3……②

  由方程f(x)=0的两实根平方和为10,得(-■)2-■=0

  即b2-2ac=10a2……③

  由①②③解得a=1,b=-4,c=3

  ∴f(x)=x2-4x+3

  小结:我们只要明确所求函数解析式的类型,便可设出其函数解析式,设法求出其系数即可得到结果。类似的已知f(x)为一次函数时,可设f(x)=ax+b(a≠0);f(x)为反比例函数时,可设f(x)=■(k≠0);f(x)为二...

与中考奥数函数解析式相关的中考数学

推荐更多