留学群专题频道高一数学教案栏目,提供与高一数学教案相关的所有资讯,希望我们所做的能让您感到满意!

高一数学函数教案7篇

高一数学函数教案 高一数学教案

  通过编辑的检索,已经找到了符合您需求的“高一数学函数教案”资源。感谢您的支持,让我们一起进步。教案课件是每位教师都必备的教学工具,需要认真地编写每一份教案课件。教案对于教育教学工作起到了重要的保障作用。

高一数学函数教案 篇1

  函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。

  1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。

  2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系;

  3.函数方程思想的几种重要形式

  (1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。

  (2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;

  (3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;

  (4)函数f(x)=(1+x)^n(n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;

  (5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;

  (6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。

高一数学函数教案 篇2

  同一只封建宗法制度的黑手,伸出了两条绳索,捆住了妇女的脖子,朝着相反的方向紧勒,要把劳动妇女置于死地而后快。祥林嫂当时就处在这种极端悲惨的境地中:

  族权迫使她寡而再嫁,夫权又视此为奇耻大辱,使她忍辱含冤,永远生活在耻辱之中。祥林嫂以后的悲剧,都是由此而引起的。

  那么,祥林嫂是如何对待新迫害的呢?

  3.高潮:

  ①祥林嫂为什么又一次来到鲁四老爷家?

  ②有人认为,丧夫失子有偶然性,这种看法对不对?

  丧夫失子似乎有偶然性,然而隐藏在偶然性背后的,是那起决定作用的必然性。祥林嫂的丈夫死于旧社会中蔓延着的传染病伤寒,阿毛死于祥林嫂的贫困、劳碌。(若不是忙着打柴摘茶养蚕,能让年仅两三岁的孩子去剥豆吗?)因此,实质上,是罪恶的政权夺走了祥林嫂的丈夫和儿子的生命,使她陷于嫁而再寡的境地。作者开始把批判的笔触由封建夫权、族权扩展到封建政权。

  按照封建宗法观念,妇女出嫁从夫,夫死从子,一旦丧夫失子,则连在家庭中生存的权利都被剥夺了。因此,大伯来收屋使祥林嫂走投无路,只好再一次来到鲁家。她到鲁家后,又遭受了更...

与高一数学教案相关的高中教案

高一数学教案分享15篇

高一数学教案

  今天小编为您提供高一数学教案,供有需要的朋友参考借鉴,希望可以帮助到你。上课前准备好课堂用到教案课件很重要,因此就需要我们老师写好属于自己教学课件。教案是学生自主学习的有效组织方式。

高一数学教案 篇1

  1.2解三角形应用举例第二课时

  一、教学目标

  1、能够运用正弦定理、余弦定理等知识和方法解决一些有关底部不可到达的物体高度测量的问题

  2、巩固深化解三角形实际问题的一般方法,养成良好的研究、探索习惯。

  3、进一步培养学生学习数学、应用数学的意识及观察、归纳、类比、概括的能力

  二、教学重点、难点

  重点:结合实际测量工具,解决生活中的测量高度问题

  难点:能观察较复杂的图形,从中找到解决问题的关键条件

  三、教学过程

  Ⅰ.课题导入

  提问:现实生活中,人们是怎样测量底部不可到达的建筑物高度呢?又怎样在水平飞行的飞机上测量飞机下方山顶的海拔高度呢?今天我们就来共同探讨这方面的问题

  Ⅱ.讲授新课

  [范例讲解]

  例1、AB是底部B不可到达的一个建筑物,A为建筑物的最高点,设计一种测量建筑物高度AB的方法。

  分析:求AB长的关键是先求AE,在ACE中,如能求出C点到建筑物顶部A的距离CA,再测出由C点观察A的仰角,就可以计算出AE的长。

  解:选择一条水平基线HG,使H、G、B三点在同一条直线上。由在H、G两点用测角仪器测得A的仰角分别是、,CD=a,测角仪器的高是h,那么,在ACD中,根据正弦定理可得

  AC=AB=AE+h=AC+h=+h

  例2、如图,在山顶铁塔上B处测得地面上一点A的俯角=54,在塔底C处测得A处的俯角=50。已知铁塔BC部分的高为27.3m,求出山高CD(精确到1m)

  师:根据已知条件,大家能设计出解题方案吗?

  若在ABD中求CD,则关键需要求出哪条边呢?

  生:需求出BD边。

  师:那如何求BD边呢?

  生:可首先求出AB边,再根据BAD=求得。

  解:在ABC中,BCA=90+,ABC=90-,

  BAC=-,BAD=.根据正弦定理,=

  所以AB==在RtABD中,得BD=ABsinBAD=

  将测量数据代入上式,得BD==≈177(m)

  CD=BD-BC≈177-27.3=150(m)

  答:山的高度约为150米.

  思考:有没有别的解法呢?若在ACD中求CD,可先求出AC。思考如何求出AC?

  例3、如图,一辆汽车在一条水平的公路上向正东行驶,到A处时测得公路南侧远处一山顶D在东偏南15的方向上,行驶5km后到达B处,测得此山顶在东偏南25的方向上,仰角为8,求此山的高度CD.

  思考1:欲求出CD,大家思考在哪个三角形中研究比较适合呢?(在BCD中)

...

与高一数学教案相关的高中教案

精选高一数学教案人教版模板

高一数学教案人教版 高一数学教案人教版模板 精选高一数学教案人教版

  老师们,同学们,让我们共同努力,培养良好的学习习惯,胸怀梦想,珍惜时间,发奋学习,立志成才,让青春载着梦想飞扬!下面是由留学群编辑为大家整理的“精选高一数学教案人教版模板”,仅供参考,欢迎大家阅读本文。

  精选高一数学教案人教版模板(一)

  (一)教学目标

  1.知识与技能:

  (1)理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集。

  (2)能使用venn图表示集合的并集和交集运算结果,体会直观图对理解抽象概念的作用。

  (3)掌握的关的术语和符号,并会用它们正确进行集合的并集与交集运算。

  2.过程与方法:

  通过对实例的分析、思考,获得并集与交集运算的法则,感知并集和交集运算的实质与内涵,增强学生发现问题,研究问题的创新意识和能力。

  3.情感、态度与价值观:

  通过集合的并集与交集运算法则的发现、完善,增强学生运用数学知识和数学思想认识客观事物,发现客观规律的兴趣与能力,从而体会数学的应用价值。

  (二)教学重点与难点

  重点:交集、并集运算的含义,识记与运用。

  难点:弄清交集、并集的含义,认识符号之间的区别与联系。

  (三)教学方法

  在思考中感知知识,在合作交流中形成知识,在独立钻研和探究中提升思维能力,尝试实践与交流相结合。

  (四)教学过程

  教学环节教学内容师生互动设计意图。

  提出问题引入新知思考:观察下列各组集合,联想实数加法运算,探究集合能否进行类似“加法”运算。

  (1)a={1,3,5},b={2,4,6},c={1,2,3,4,5,6}

  (2)a={x|x是有理数},

  b={x|x是无理数},

  c={x|x是实数}.

  师:两数存在大小关系,两集合存在包含、相等关系;实数能进行加减运算,探究集合是否有相应运算.

  生:集合a与b的元素合并构成c.

  师:由集合a、b元素组合为c,这种形式的组合就是为集合的并集运算.生疑析疑,

  导入新知

  形成

  概念

  思考:并集运算.

  集合c是由所有属于集合a或属于集合b的元素组成的,称c为a和b的并集.

  定义:由所有属于集合a或集合b的元素组成的集合.称为集合a与b的并集;记作:a∪b;读作a并b,即a∪b={x|x∈a,或x∈b},venn图表示为:

  师:请同学们将上述两组实例的共同规律用数学语言表达出来.

  学生合作交流:归纳→回答→补充或修正→完善→得出并集的定义.在老师指导下,学生通过合作交流,探究问题共性,感知并集概念,从而初步理解并集的含义.

  应用举例例1设a={4,5,6,8},b={3,5,7,8},求a∪b.

  例2设集合a={x|–1<x<2},集合b={x|1<x<3},求a∪b.

  例1解:a∪b={4,5,6,8}∪{3,5,7,8}={3,4,...

与高一数学教案相关的高中教案

高一数学必修1教案大全(汇总)

高一数学必修1教案 高一数学教案 数学必修1教案

与高一数学教案相关的高中教案

高一数学必修1《函数模型及其应用》教案

高一数学教案 函数模型及其应用教案 高一数学必修1教案

  高一数学必修1《函数模型及其应用》教案

  【内容】建立函数模型刻画现实问题

  【内容解析】函数模型本身就来源于现实,并用于解决实际问题,所以本节内容是通过对展现的实例进行分析与探究使得学生能有更多的机会从实际问题中发现或建立数学模型,并能体会数学在实际问题中的应用价值,同时本课题是学生在初中学习了函数的图象和性质的基础上刚上高中进行的一节探究式课堂教学。在一个具体问题的解决过程中,学生可以从理解知识升华到熟练应用知识,使他们能辩证地看待知识理解与知识应用间的关系,与所学的函数知识前后紧紧相扣,相辅相成。;另一方面,函数模型本身就是与实际问题结合在一起的,空讲理论只能导致学生不能真正理解函数模型的应用和在应用过程中函数模型的建立与解决问题的过程,而从简单、典型、学生熟悉的函数模型中挖掘、提炼出来的思想和方法,更容易被学生接受。同时,应尽量让学生在简单的实例中学习并感受函数模型的选择与建立。因为建立函数模型离不开函数的图象及数据表格,所以会有一定量的原始数据的处理,这可能会用到电脑和计算器以及图形工具,而我们的教学应更加关注的是通过实际问题的分析过程来选择适当的函数模型和函数模型的构建过程。在这个过程中,要使学生着重体会的是模型的建立,同时体会模型建立的可操作性、有效性等特点,学习模型的建立以解决实际问题,培养发展有条理的思维和表达能力,提高逻辑思维能力。

  【教学目标】

  (1)体现建立函数模型刻画现实问题的基本过程.

  (2)了解函数模型的广泛应用

  (3)通过学生进行操作和探究提高学生发现问题、分析问题、解决实际问题的能力

  (4)提高学生探究学习新知识的兴趣,培养学生,勇于探索的科学态度

  【重点】了解并建立函数模型刻画现实问题的基本过程,了解函数模型的广泛应用

  【难点】建立函数模型刻画现实问题中数据的处理

  【教学目标解析】通过对全班学生中抽样得出的样本进行分析和处理,,使学生认识到本节课的重点是利用函数建模刻画现实问题的基本过程和提高解决实际问题的能力,在引导突出重点的同时能过学生的小组合作探究来突破本节课的难点,这样,在小组合作学习与探究过程中实现教学目标中对知识和能力的要求(目标1,2,3)在如何用函数建模刻画现实问题的基本过程中让学生亲身体验函数应用的广泛性,同时提高学生探究学习新知识的兴趣,培养学生主动参与、自主学习、勇于探索的科学态度,从而实现教学目标中的德育目标(目标4)

  【学生学习中预期的问题及解决方案预设】

  ①描点的规范性;②实际操作的速度;③解析式的计算速度④计算结束后不进行检验

  针对上述可能出现的问题,我在课前课上处理是,课前给学生准备一些坐标纸来提高描点的规范性,同时让学生使用计算器利用小组讨论来进行多人合作以期提高相应计算速度,在解析式得出后引导学生得出的标准应该是只有一个的较好的,不能有很多的标准,这样以期引导学生想到对结果进行筛选从而引出检验.

  【教学用具】多媒体辅助教学(ppt、计算机)。

  【教学过程】

  教学前言:

  函数模型是应用最广泛的数学模型之一,许多实际问题一旦认定是函数关系,就可以通...

与高一数学教案相关的高中教案

高一数学《用二分法求方程的近似解》教案

高一数学教案 用二分法求方程的近似解教案

  高一数学《用二分法求方程的近似解》教案

  教学目标

  知识与技能 通过具体实例理解二分法的概念及其适用条件,了解二分法是求方程近似解的常用方法,从中体会函数与方程之间的联系及其在实际问题中的应用.

  过程与方法 能借助计算器用二分法求方程的近似解,并了解这一数学思想,为学习算法做准备.

  情感、态度、价值观 体会数学逼近过程,感受精确与近似的相对统一.

  教学重点

  通过用二分法求方程的近似解,体会函数的零点与方程根之间的联系,初步形成用函数观点处理问题的意识.

  教学难点

  恰当地使用信息技术工具,利用二分法求给定精确度的方程的近似解.

  教材分析

  本节课注重从学生已有的基础(一元二次方程及其根的求法,一元二次函数及其图象与性质)出发,从具体(一元二次方程的根与对应的一元二次函数的图象与轴的交点的横坐标之间的关系)到一般,揭示方程的根与对应函数零点之间的关系.在此基础上,再介绍求函数零点的近似值的“二分法”,并在总结“用二分法求函数零点的步骤”中渗透算法的思想,为学生后续学习算法内容埋下伏笔.教科书不仅希望学生在数学知识与运用信息技术的能力上有所收获,而且希望学生感受到数学文化方面的熏陶,所以在“阅读与思考”中,介绍古今中外数学家在方程求解中所取得的成就,特别是我国古代数学家对数学发展与人类文明的贡献.

  学情分析

  通过本节课的学习,使学生在知识上学会用“二分法”求方程的近似解,从中体会函数与方程之间的联系;在求解的过程中,由于数值计算较为复杂,因此对获得给定精确度的近似解增加了困难,所以希望学生具备恰当地使用信息技术工具解决这一问题的能力.这就要求学生除了能熟练地运用计算器演算以外,还要能借助几何画板4.06中文版中的“绘制新函数”功能画出基本初等函数的图象,掌握Microsoft Excel软件一些基本的操作.

  教学媒体分析

  多媒体微机室、Authorware7.02中文版、几何画板4.06中文版、Microsoft Excel、QBASIC语言应用程序

  教学方法

  动手操作、分组讨论、合作交流、课后实践

  教学环节设计流程图

  教学设计理念

  1.构建共同基础,提供发展平台;

  2.提供多样解法,适应个性选择;

  3.倡导积极主动、勇于探索的学习方式;

  4.注重提高学生的数学思维能力;

  5.发展学生的数学应用意识;

  6.与时俱进地认识“双基”;

  7.强调本质,注意适度形式化;

  8.体现数学的文化价值;

  9.注重信息技术与数学课程的整合;

  10.建立合理...

与高一数学教案相关的高中教案

高一数学必修1《函数与方程》教案

高一数学教案 函数与方程教案

  高一数学必修1《函数与方程》教案

  函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。

  1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。

  2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系;

  3.函数方程思想的几种重要形式

  (1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。

  (2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式;

  (3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要;

  (4)函数f(x)=(1+x)^n (n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题;

  (5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论;

  (6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。

  教案设计频道小编推荐:高中数学教案 | 高一数学教案 | 高一数学教学计划

...

与高一数学教案相关的高中教案

高一数学必修1《幂函数》教案

高一数学教案 幂函数教案

与高一数学教案相关的高中教案

高一数学必修1《对数函数》教案

高一数学教案 对数函数教案

  高一数学必修1《对数函数》教案

  教学目标:①掌握对数函数的性质。

  ②应用对数函数的性质可以解决:对数的大小比较,求复合函数的定义域、值 域及单调性。

  ③ 注重函数思想、等价转化、分类讨论等思想的渗透,提高解题能力。

  教学重点与难点:对数函数的性质的应用。

  教学过程设计:

  ⒈复习提问:对数函数的概念及性质。

  ⒉开始正课

  1 比较数的大小

  例 1 比较下列各组数的大小。

  ⑴loga5.1 ,loga5.9 (a>0,a≠1)

  ⑵log0.50.6 ,logЛ0.5 ,lnЛ

  师:请同学们观察一下⑴中这两个对数有何特征?

  生:这两个对数底相等。

  师:那么对于两个底相等的对数如何比大小?

  生:可构造一个以a为底的对数函数,用对数函数的单调性比大小。

  师:对,请叙述一下这道题的解题过程。

  生:对数函数的单调性取决于底的大小:当0

  调递减,所以loga5.1>loga5.9 ;当a>1时,函数y=logax单调递增,所以loga5.1

  板书:

  解:Ⅰ)当0

  ∵5.1<5.9 ∴loga5.1>loga5.9

  Ⅱ)当a>1时,函数y=logax在(0,+∞)上是增函数,

  ∵5.1<5.9 ∴loga5.1

  师:请同学们观察一下⑵中这三个对数有何特征?

  生:这三个对数底、真数都不相等。

  师:那么对于这三个对数如何比大小?

  生:找“中间量”, log0.50.6>0,lnЛ>0,logЛ0.5<0;lnЛ>1,

  log0.50.6<1,所以logЛ0.5< log0.50.6< lnЛ。

  板书:略。

  师:比较对数值的大小常用方法:①构造对数函数,直接利用对数函数 的单调性比大小,②借用“中间量”间接比大小,③利用对数函数图象的位置关系来比大小。

  2 函数的定义域, 值 域及单调性。

  教案设计频道小编推荐:高中数学教案 | 高一数学教案 |

与高一数学教案相关的高中教案

高一数学必修1《指数函数》教案

高一数学教案 指数函数教案

  高一数学必修1《指数函数》教案

  教学目标:

  1、知识目标:使学生理解指数函数的定义,初步掌握指数函数的图像和性质。

  2、能力目标:通过定义的引入,图像特征的观察、发现过程使学生懂得理论与实践 的辩证关系,适时渗透分类讨论的数学思想,培养学生的探索发现能力和分析问题、解决问题的能力。

  3、情感目标:通过学生的参与过程,培养他们手脑并用、多思勤练的良好学习习惯和勇于探索、锲而不舍的治学精神。

  教学重点、难点:

  1、 重点:指数函数的图像和性质

  2、 难点:底数 a 的变化对函数性质的影响,突破难点的关键是利用多媒体动感显示,通过颜色的区别,加深其感性认识。

  教学方法:引导——发现教学法、比较法、讨论法

  教学过程:

  一、事例引入

  T:上节课我们学习了指数的运算性质,今天我们来学习与指数有关的函数。什么是函数?

  S: --------

  T:主要是体现两个变量的关系。我们来考虑一个与医学有关的例子:大家对“非典”应该并不陌生,它与其它的传染病一样,有一定的潜伏期,这段时间里病原体在机体内不断地繁殖,病原体的繁殖方式有很多种,分裂就是其中的一种。我们来看一种球菌的分裂过程:

  C:动画演示(某种球菌分裂时,由1分裂成2个,2个分裂成4个,------。一个这样的球菌分裂x次后,得到的球菌的个数y与x的函数关系式是: y = 2 x )

  S,T:(讨论) 这是球菌个数 y 关于分裂次数 x 的函数,该函数是什么样的形式(指数形式),

  从 函数特征分析:底数 2 是一个不等于 1 的正数,是常量,而指数 x 却是变量,我们称这种函数为指数函数——点题。

  二、指数函数的定义

  C:定义: 函数 y = a x (a>0且a≠1)叫做指数函数, x∈R.。

  问题 1:为何要规定 a > 0 且 a ≠1?

  S:(讨论)

  C: (1)当 a <0 时,a x 有时会没有意义,如 a=﹣3 时,当x=

  就没有意义;

  (2)当 a=0时,a x 有时会没有意义,如x= - 2时,

  (3)当 a = 1 时, 函数值 y 恒等于1,没有研究的必要。

  巩固练习1:

  下列函数哪一项是指数函数( )

  A、 y=x 2 B、y=2x 2 C、y= 2 x D、y= -2 x

  教案设计频道小编推荐:高中数学教案 |

与高一数学教案相关的高中教案

推荐更多