新入职的老师需要备好上课会用到的教案课件,每位老师都应该他细设计教案课件。一份好的教案是成功教学的重要保障。希望这篇“数学定理的教案”能够完美地展现出您所想要的内容,要随时查看请将此页加入到浏览器收藏夹!
数学定理的教案 篇1
向量证明正弦定理
表述:设三面角∠P—ABC的三个面角∠BPC,∠CPA,∠APB所对的二面角依次为∠PA,∠PB,∠PC,则Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA=Sin∠PC/Sin∠APB。
目录
1证明2全向量证明
证明
过A做OA⊥平面BPC于O。过O分别做OM⊥BP于M与ON⊥PC于N。连结AM、AN。显然,∠PB=∠AMO,Sin∠PB=AO/AM;∠PC=∠ANO,Sin∠PC=AO/AN。另外,Sin∠CPA=AN/AP,Sin∠APB=AM/AP。则Sin∠PB/Sin∠CPA=AO×AP/(AM×AN)=Sin∠PC/Sin∠APB。同理可证Sin∠PA/Sin∠BPC=Sin∠PB/Sin∠CPA。即可得证三面角正弦定理。
全向量证明
如图1,△ABC为锐角三角形,过点A作单位向量j垂直于向量AC,则j与向量AB的夹角为90°—A,j与向量CB的夹角为90°—C
由图1,AC+CB=AB(向量符号打不出)
在向量等式两边同乘向量j,得·
j·AC+CB=j·AB
∴│j││AC│cos90°+│j││CB│cos(90°—C)
=│j││AB│cos(90°—A)
∴asinC=csinA
∴a/sinA=c/sinC
同理,过点C作与向量CB垂直的单位向量j,可得
c/sinC=b/sinB
∴a/sinA=b/sinB=c/sinC
2步骤1
记向量i,使i垂直于AC于C,△ABC三边AB,BC,CA为向量a,b,c
∴a+b+c=0
则i(a+b+c)
=i·a+i·b+i·c
=a·cos(180—(C—90))+b·0+c·cos(90—A)
=—asinC+csinA=0
接着得到正弦定理
其他
步骤2、
在锐角△ABC中,设BC=a,AC=b,AB=c。作CH⊥AB垂足为点H
CH=a·sinB
CH=b·sinA
∴a·sinB=b·sinA
得到a/sinA=b/sinB
同理,在△ABC中,
b/sinB=c/sinC
步骤3、
证明a/sinA=b/sinB=c/sinC=2R:
任意三角形ABC,作ABC的外接圆O、
作直径BD交⊙O于D、连接DA、
因为直径所对的圆周角是直角,所以∠DAB=90度
因为同弧所对的圆周角相等,所以∠D等于∠C、
所以c/sinC=c/sinD=BD=...