“教案课件是老师教学工作的起始环节,同时也是授课的关键条件,每位老师都需认真准备。除了教师的专业水平,学生的反应也对教学质量产生影响。因此,我们需要从多个角度来撰写教案课件。希望本篇文章对您有所帮助,如果您对这个话题感兴趣,欢迎关注我们网站!”
二次函数教案(篇1)
〖大纲要求
1. 理解二次函数的概念;
2. 会把二次函数的一般式化为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;
3. 会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(ax+m)2+k的图象,了解特殊与一般相互联系和转化的思想;
4. 会用待定系数法求二次函数的解析式;
5. 利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和不等式之间的联系。
内容
(1)二次函数及其图象
如果y=ax2+bx+c(a,b,c是常数,a≠0),那么,y叫做x的二次函数。
二次函数的图象是抛物线,可用描点法画出二次函数的图象。
(2)抛物线的顶点、对称轴和开口方向
抛物线y=ax2+bx+c(a≠0)的顶点是 ,对称轴是 ,当a>0时,抛物线开口向上,当a
抛物线y=a(x+h)2+k(a≠0)的顶点是(-h,k),对称轴是x=-h.
〖考查重点与常见题型
1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:
已知以x为自变量的二次函数y=(m-2)x2+m2-m-2额图像经过原点,
则m的值是
2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:
如图,如果函数y=kx+b的图像在第一、二、三象限内,那么函数
y=kx2+bx-1的图像大致是( )
y y y y
1 1
0 x o-1 x 0 x 0 -1 x
A B C D
3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:
已知一条抛物线经过(0,3),(4,6)两点,对称轴为x=,求这条抛物线的.解析式。
4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的极值,有关试题为解答题,如:
已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的横坐标是-1、3,与y轴交点的纵坐标是-(1)确定抛物线的解析式;(2)用配方法确定抛物线的开口方向、对称轴和顶点坐标.
5.考查代数与几何的综合能力,常见的作为专项压轴题。
习题1:
一、填空题:(每小题3分,共30分)
1、已知A(3,6)在第一象限,则点B(3,-6)在第 象限
2、对于y=-,当x>0时,y随x的增大而
3、二次函数y=x2+x-5取最小值是,自...