留学群专题频道二元二次方程栏目,提供与二元二次方程相关的所有资讯,希望我们所做的能让您感到满意!

二元二次方程解法有哪些

二元二次方程 方程解法 二元二次方程解法

  二元二次方程在我们的学习中经常会碰到,特别是步入初高中以来,接触到的会越来越多。以下是由留学群编辑为大家整理的“二元二次方程解法有哪些”,仅供参考,欢迎大家阅读。

  代入消元法

  (1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.这种解方程组的方法叫做代入消元法,简称代入法.

  (2)代入法解二元一次方程组的步骤

  ①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;

  ②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的.);

  ③解这个一元一次方程,求出未知数的值;

  ④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;

  ⑤用“{”联立两个未知数的值,就是方程组的解;

  ⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边).

  例题:

  {x-y=3 ①

  {3x-8y=4②

  由①得x=y+3③

  ③代入②得

  3(y+3)-8y=4

  y=1

  所以x=4

  则:这个二元一次方程组的解

  {x=4

  {y=1

  加减消元法

  (1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.

  (2)加减法解二元一次方程组的步骤

  ①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;

  ②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);

  ③解这个一元一次方程,求出未知数的值;

  ④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;

  ⑤用“{”联立两个未知数的值,就是方程组的解;

  ⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边).

  如:

  {5x+3y=9①

  {10x+5y=12②

  把①扩大2倍得到③

  {10x+6y=18

  ③-②得:

  10x+6y-(10x+5y)=18-12

  y=6

  再把y=带入①.②或③中

  解之得:{x=-9/5

  {y=6

  总结

  纵然二元二次方程的题目多样,但是摸清解题思路与步骤,便能突出重围!

...

与二元二次方程相关的实用资料

二元二次方程的解法有哪些

二元二次方程解法 二元二次方程的解法 关于二元二次方程

  二元二次方程解法是什么,典型有效的方法是什么?想知道的小伙伴看过来,下面由留学群小编为你精心准备了“二元二次方程的解法有哪些”仅供参考,持续关注本站将可以持续获取更多的资讯!

  二元二次方程的解法有哪些

  1、代入消元法

  (1)概念:将方程组中一个方程的某个未知数用含有另一个未知数的代数式表示出来,代入另一个方程中,消去一个未知数,得到一个一元一次方程,最后求得方程组的解.这种解方程组的方法叫做代入消元法,简称代入法。

  (2)代入法解二元一次方程组的步骤

  ①选取一个系数较简单的二元一次方程变形,用含有一个未知数的代数式表示另一个未知数;

  ②将变形后的方程代入另一个方程中,消去一个未知数,得到一个一元一次方程(在代入时,要注意不能代入原方程,只能代入另一个没有变形的方程中,以达到消元的目的.);

  ③解这个一元一次方程,求出未知数的值;

  ④将求得的未知数的值代入①中变形后的方程中,求出另一个未知数的值;

  ⑤用“{”联立两个未知数的值,就是方程组的解;

  ⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。

  2、加减消元法

  (1)概念:当方程中两个方程的某一未知数的系数相等或互为相反数时,把这两个方程的两边相加或相减来消去这个未知数,从而将二元一次方程化为一元一次方程,最后求得方程组的解,这种解方程组的方法叫做加减消元法,简称加减法.

  (2)加减法解二元一次方程组的步骤

  ①利用等式的基本性质,将原方程组中某个未知数的系数化成相等或相反数的形式;

  ②再利用等式的基本性质将变形后的两个方程相加或相减,消去一个未知数,得到一个一元一次方程(一定要将方程的两边都乘以同一个数,切忌只乘以一边,然后若未知数系数相等则用减法,若未知数系数互为相反数,则用加法);

  ③解这个一元一次方程,求出未知数的值;

  ④将求得的未知数的值代入原方程组中的任何一个方程中,求出另一个未知数的值;

  ⑤用“{”联立两个未知数的值,就是方程组的解;

  ⑥最后检验求得的结果是否正确(代入原方程组中进行检验,方程是否满足左边=右边)。

  拓展阅读:二元一次方程的概念

  含有两个未知数(x和y),并且未知项的指数都是1,这样的方程被叫做二元一次方程。二元一次方程的一般形式为ax+by=c(a≠0,b≠0).

  二元一次方程组的概念

  (1)把具有相同未知数的两个二元一次方程合在一起,就组成了二元一次方程组。

  (2)二元一次方程组必须满足的三个条件:含有两个未知数;含未知数的项的次数都是1;整式方程组(含两个或两个以上的整式方程)。

  推荐阅读:

  

与二元二次方程相关的实用资料

推荐更多