美国加利福尼亚大学戴维斯分校基本概况

  三、教研优势

  1.概况

  Students Connect to Hands-on Learning,Whether you’re interested in laboratories or libraries, at UC Davis you can get hands-on research experience. And you’ll be working with top-notch faculty mentors and some of the best graduate students in the world.Undergraduates are encouraged to dive into research at UC Davis. You can do it through internships on campus, at the UC Davis Medical Center, with local industry or under the guidance of a professor.

  学生与学习之间的联系直接通过实践来实现,无论您对加州大学戴维斯分校实验室或图书馆感兴趣,您都可以获得实际的研究经验。您将与世界顶尖的教师导师和一些最好的研究生一起工作。鼓励本科生潜入加州大学戴维斯分校的研究。您可以通过校园实习,加州大学戴维斯分校医学中心,当地工业或教授的指导来做。

  2.和国际顶尖研究项目的合作关系

  Join Our Culture of Innovation:If you are looking for a research university that nurtures a culture of innovation, cross-disciplinary ideas and cooperation, UC Davis is the place to come.Our faculty is dedicated to partnerships and collaborations with other universities, governments, foundations, industry and global research enterprises. For example, those interested in technology transfer will discover that we are creating many technologies available for licensing.Our major partnerships:Innovation Institute for Food and HealthUC Davis and Mars, Incorporated have created this institute to deliver Silicon Valley-type breakthroughs in food, agriculture and health. The vision is to have enabled safe, sustainable, and secure nutrition for all.Personalized cancer therapy research.The UC Davis Comprehensive Cancer Center has been working with Jackson Laboratory to test bladder cancer therapies in mice. When a therapy works in the model, it is given to the patient.Honda Smart Home:In 2014, Honda and UC Davis opened Honda Smart Home US, showcasing technologies that enable zero net energy living and transportation. The home in UC Davis West Village can produce more energy on-site from renewable sources than it consumes annually.Food safety partnership in China:This partnership between Chinese universities and the UC Davis World Food Center is improving food safety and restoring confidence in consumers in China and around the world. The center will coordinate research and training activities across China.Life Science Innovation Center in Davis:HM.CLAUSE has partnered with UC Davis to open a business incubator to advance regional innovation in the life sciences. The venture builds on a long-standing partnership between the two to turn viable ideas in life science into successful businesses.Life Sciences Innovation Center in Chile:Similar to our Davis incubator, in 2015 we partnered with the Chilean government. The Santiago center fosters collaboration aimed at transforming public-sector research into regional, national and global business opportunities.The Exploratorium Museum:UC Davis is linking up with the Exploratorium in San Francisco to show the latest scientific innovations in the museum’s exhibits and programs. They encompass environmental science, sustainable energy, and coastal and marine sciences.Lawrence Livermore National Laboratory:With a partnership that stretches to the 1950s, this Bay Area national lab employs 900 UC Davis alumni — the most from any university. In 2015, the partners targeted new areas including astrophysics, planetary science, materials and fusion energy.China Auto Technology and Research Center:The China–U.S. ZEV Policy Lab, created in 2014, will help speed the commercialization of plug-in and fuel cell electric cars in China and the U.S. The focus is on fast-tracking zero emissions in the world’s largest new-car market — China.

  加入我们的创新文化,如果你正在寻找一所能培养创新文化、跨学科思维和合作的研究型大学,那么加州大学戴维斯分校就是你的选择。我们的教师致力于与其他大学、政府、基金会、工业和全球研究企业建立伙伴关系和合作。例如,那些对技术转移感兴趣的人会发现,我们正在创建许多用于许可的技术。

  我们的主要合作伙伴:

  食品与健康创新研究所:加州大学戴维斯分校和玛氏公司已经成立了这个研究所,在食品、农业和健康方面提供硅谷式的突破。其愿景是为所有人提供安全、可持续和安全的营养。个性化的癌症治疗研究,加州大学戴维斯综合癌症中心一直在与杰克逊实验室合作,对小鼠的膀胱癌疗法进行试验。当一种疗法在模型中起作用时,它就会被给予病人。本田智能家居:2014年本田和加州大学戴维斯分校在美国开了本田智能家居,展示了零净能源生活和运输的技术。加州大学戴维斯分校的家庭可以从可再生能源中生产更多的能源,而不是每年消耗的能源。中国食品安全合作伙伴关系:中国大学和加州大学戴维斯世界食品中心之间的这种合作关系正在改善食品安全,恢复中国和世界各地消费者的信心。该中心将协调全国各地的研究和培训活动。戴维斯的生命科学创新中心,条款已经与加州大学戴维斯分校合作,开设了一个商业孵化器,以促进生命科学领域的创新。该合资企业建立在两家公司长期合作的基础上,将生命科学中的可行理念转化为成功的企业。智利生命科学创新中心:与我们的戴维斯孵化器相似,2015年我们与智利政府合作。圣地亚哥中心促进了旨在将公共部门研究转变为地区、国家和全球商业机会的合作。探索博物馆:加州大学戴维斯分校与旧金山的探索博物馆合作,展示博物馆展品和项目的最新科学创新成果。它们包括环境科学、可持续能源、沿海和海洋科学。劳伦斯利弗莫尔国家实验室:这一合作关系一直延续到上世纪50年代,这个湾区国家实验室雇佣了900名加州大学戴维斯分校的校友,这是所有大学中最多的。2015年合作伙伴瞄准了包括天体物理学、行星科学、材料和核聚变能源在内的新领域。中国汽车技术与研究中心:ZEV政策实验室于2014年成立,将有助于加速中国和美国的插电式汽车和燃料电池汽车的商业化,重点是在全球最大的新车市场——中国快速追踪零排放。

  3.部分杰出研究成果展示

  Scientists outfox ear tumors in endangered Catalina Island foxes

  Until recently, endangered foxes on California’s Catalina Island were suffering from one of the highest prevalences of tumors ever documented in a wildlife population, UC Davis scientists have found. But treatment of ear mites appears to be helping the wild animals recover.Roughly half of adult foxes examined between 2001 and 2008 had tumors in their ears, with about two-thirds of those malignant, according to a UC Davis study published this month in the journal PLOS ONE.More than 98 percent of the foxes were also infected with ear mites. These mites appear to be a predisposing factor for ear tumors in the Santa Catalina Island foxLuckily for the foxes, the story doesn’t stop there.“We established a high prevalence of both tumors and ear mites, and hypothesized that there was something we could potentially do about it, which now appears to be significantly helping this population,” said Winston Vickers, lead author of the prevalence study and an associate veterinarian with the UC Davis Wildlife Health Center at the UC Davis School of Veterinary Medicine.Working closely with researchers from the Institute for Wildlife Studies and Catalina Island Conservancy, the scientists conducted one of the few studies to estimate disease prevalence in an entire free-living wildlife population.A rare success story,A complementary study, also led by UC Davis and published in PLOS ONE today, found that treatments with acaracide, a chemical agent used to kill ear mites in dogs and cats, reduced the prevalence of ear mite infection dramatically, from 98 percent to 10 percent among treated foxes at the end of the six-month trial. Ear canal inflammation and other signs of developing ear tumors also dropped.“It’s rare to have a success story,” said the ear mite study’s lead author, Megan Moriarty, a student with the UC Davis School of Veterinary Medicine when the study began and currently a staff research associate at the UC Davis Wildlife Health Center. “It was interesting to see such striking results over a relatively short time period.”Santa Catalina Island foxes are intensively managed by the Catalina Island Conservancy. In 2009, when the mite treatment study began, the conservancy added acaracide to the variety of preventative treatments they administer to the foxes each year.The conservancy confirms that, in the years since, the overall prevalence of ear mites has dramatically declined in the areas they normally catch and treat foxes, as have the rates of tissue masses in the ear canals, suggesting reduced tumor presence.“The annual prophylactic acaracide treatment has greatly improved the overall condition of the foxes’ ear canals,” said Julie King, the conservancy’s director of conservation and wildlife management and co-author of both studies. “Within just a few months post treatment, the presence of wax, infection, inflammation and pigmentation virtually disappear. We have also noted an apparent reduction in the number of tumors observed, despite the fact that the absence of wax and other obstructions has made them easier to detect.”Conservancy biologists have also documented a cascade effect on the foxes’ offspring, since most young foxes get the ear mites from their parents.“Prior to treatment in 2009, approximately 90 percent of all pups handled had ear mites, whereas by 2015, mites were detected in only 15 percent of new pups.” King said.Genetics may play a role,The studies pose new questions. For instance, the mite treatment certainly reduces the prevalence and severity of mite infection, as well as risk factors for tumor development, but what effect will it have on overall tumor and cancer rates for these foxes in the long term?Also, ear mites infect other Channel Island foxes, but those foxes don’t develop ear canal tumors. So why are Santa Catalina Island foxes predisposed to these tumors and not other Channel Island foxes? Vickers and colleagues are preparing to research possible genetic reasons for this.“Catalina foxes have an over-exuberant tissue reaction to the same stimuli — the mites — and that appears to lead to the tumors,” Vickers said. “That’s why we gravitate toward genetics in addition to other factors.”Santa Catalina Island fox history,The Santa Catalina Island fox is one of six subspecies native to the Channel Islands off the coast of Southern California. Its population declined dramatically in 1999 when a distemper epidemic decimated up to 90 percent of the population, prompting the federal endangered species listing for the roughly 150 foxes remaining. The population has since rebounded to an estimated 1,717 foxes.Both studies received funding or other support from the Morris Animal Foundation, Institute for Wildlife Studies, Catalina Island Conservancy, U.S. Navy and The Nature Conservancy.Co-authoring institutions for the prevalence study included Institute for Wildlife Studies, UC Davis School of Veterinary Medicine, California Department of Fish and Wildlife, Catalina Island Conservancy, and UC San Diego.Co-authoring institutions on the ear mite study included those listed above as well as Greer Laboratory.

  研究成果一:科学家在濒危的卡塔利娜岛狐狸中引发耳朵肿瘤

  直到最近,加州大学戴维斯分校科学家发现,加州卡塔琳娜岛上的濒危狐狸患有野生动物人群记录的肿瘤发病率最高。但耳螨的治疗似乎正在帮助野生动物恢复。根据本月在“PLOS ONE”杂志上发表的加州大学戴维斯分校研究报告,大约一半的成年狐狸在2001年至2008年期间患有肿瘤,其中约有三分之二为恶性肿瘤。超过98%的狐狸也被耳螨感染。这些螨虫似乎是圣卡塔利娜岛狐狸耳肿瘤的诱因。幸运的是,狐狸的故事并不止于此。流行病学研究的主要作者温斯顿·维克斯(Winston Vickers)表示:“我们建立了肿瘤和耳螨的高发病率,并假设有可能对此有所贡献,现在似乎对这个人群有很大的帮助。”兽医与UC Davis野生动物保健中心在加州大学戴维斯分校兽医学院。与野生动物研究所和卡塔琳娜岛保护协会的研究人员密切合作,科学家们进行了少数研究,以估计整个自由野生动物群体的疾病流行率。一个罕见的成功故事,由加州大学戴维斯分校领导,并于现在的在PLOS ONE出版的补充研究发现,使用杀螨剂(一种用于杀死狗和猫)中的螨虫的化学试剂进行治疗,将耳螨感染的发病率从98%急剧下降到10%在治疗的狐狸在六个月审判结束时。耳道炎症等发生耳肿瘤的迹象也下降。耳朵螨研究的主要作者Megan Moriarty表示:“研究开始时,加州大学戴维斯分校兽医学院的学生Megan Moriarty表示,目前在加州大学戴维斯分校野生动物保健中心的工作人员研究人员也是这样。” “在相对较短的时间内看到这样惊人的结果是有趣的。”圣卡塔利娜岛狐狸由卡塔利娜岛保护区密集管理。2009年,当螨虫治疗研究开始时,该省每年向狐狸施用各种各样的预防治疗方法。卫生证实,在过去几年中,耳螨的总体发病率在通常捕获和治疗狐狸的地区已经急剧下降,以及耳道中组织块的发生率,表明肿瘤存在减少。

  保护和野生生物管理总监Julie King表示:“年度预防性治疗痤疮治疗大大改善了狐狸耳道的整体状况。” “治疗后短短几个月内,蜡,感染,炎症和色素沉着的存在几乎消失了。我们还注意到观察到的肿瘤数量明显减少,尽管没有蜡和其他障碍物使得它们更易于检测。“保护生物学家也记录了对狐狸后代的一个级联效应,因为大多数年轻狐狸都会从父母那里获得耳螨。“在2009年治疗之前,所有处理的小狗中约有90%是耳螨,而到2015年,只有15%的新生蛹发现螨虫。”King说。遗传学可能发挥作用,这些研究提出了新的问题。例如,螨治疗肯定会降低螨感染的流行程度和严重程度,以及肿瘤发生的危险因素,但对长期这些狐狸的总体肿瘤和癌症发病率有什么影响?此外,耳螨感染其他Channel Island狐狸,但是这些狐狸不会发展出耳道肿瘤。那么为什么圣卡塔利娜岛狐狸易患这些肿瘤,而不是其他海峡岛狐狸?维京人和同事正在准备研究可能的遗传原因。维克斯说:“卡特琳娜狐狸对同样的刺激物 - 螨虫具有过度旺盛的组织反应 - 这似乎导致了肿瘤。“这就是为什么除了其他因素之外,我们倾向于遗传学。”圣卡塔利娜岛狐狸史,圣卡塔利娜岛狐狸是南加利福尼亚沿海海峡群岛的六种亚种之一。其人口在1999年急剧下降,当时瘟热疫情高达人口的90%,促使联邦濒危物种上市,剩下约150只狐狸。人口已经反弹到1717只狐狸。这两项研究均获得Morris动物基金会,野生动物研究所,卡塔利娜岛保护协会,美国海军和大自然保护协会的资助或其他支持。共同创作机构的流行研究包括野生动物研究所,加州大学戴维斯分校兽医学院,加利福尼亚鱼和野生动物部,卡塔利娜岛保护协会和加州圣地亚哥。耳朵螨研究的联合机构包括上述列表以及格雷尔实验室。

  Why Pandas Are Black and White

  The study, a collaboration between the University of California, Davis, and California State University, Long Beach, determined that the giant panda’s distinct black-and-white markings have two functions: camouflage and communication.“Understanding why the giant panda has such striking coloration has been a long-standing problem in biology that has been difficult to tackle because virtually no other mammal has this appearance, making analogies difficult,” said lead author Tim Caro, a professor in the UC Davis Department of Wildlife, Fish and Conservation Biology. “The breakthrough in the study was treating each part of the body as an independent area.,giant panda drawing,Credit: Ricky Patel,This enabled the team to compare different regions of fur across the giant panda’s body to the dark and light coloring of 195 other carnivore species and 39 bear subspecies, to which it's related. Then they tried to match the darkness of these regions to various ecological and behavioral variables to determine their function.Hiding in snow or forest,Through these comparisons, the study found that most of the panda — its face, neck, belly, rump — is white to help it hide in snowy habitats. The arms and legs are black, helping it to hide in shade.The scientists suggest that this dual coloration stems from its poor diet of bamboo and inability to digest a broader variety of plants. This means pandas can never store enough fat to go dormant during the winter, as do some bears. So it has to be active year-round, traveling across long distances and habitat types that range from snowy mountains to tropical forests.The markings on the panda's head, however, are not used to hide from predators, but rather to communicate. Dark ears may help convey a sense of ferocity, a warning to predators. Their dark eye patches may help them recognize each other or signal aggression toward panda competitors.“This really was a Herculean effort by our team, finding and scoring thousands of images and scoring more than 10 areas per picture from over 20 possible colors,” said co-author Ted Stankowich, an assistant professor at CSU Long Beach. “Sometimes it takes hundreds of hours of hard work to answer what seems like the simplest of questions: Why is the panda black and white?”Additional co-authors include Hannah Walker from CalState, Long Beach, and Zoe Rossman and Megan Hendrix from UC Davis.

  研究成果二:为什么熊猫是黑白的?

  这项研究是由加州大学戴维斯分校和加州州立大学长滩分校共同完成的,他们认为大熊猫的黑白标记有两种功能:伪装和交流。“理解为什么大熊猫有如此惊人的颜色,一直是生物学上一个长期存在的问题,因为几乎没有其他哺乳动物有这种现象,所以很难进行类比,”加州大学戴维斯分校野生动物、鱼类和保护生物学的教授Tim Caro说。“这项研究的突破是把身体的每一部分都当作一个独立的区域来对待。”

  这使得该团队可以将不同的皮毛区域与其他195种食肉动物和39种熊类的颜色进行对比,并与之相关。然后,他们试图将这些区域的黑暗与各种生态和行为变量相匹配,以确定它们的功能。藏在雪或森林,通过这些对比,研究发现大部分的大熊猫——脸、脖子、腹部、臀部——都是白色的,以帮助它们隐藏在雪的栖息地。胳膊和腿是黑色的,帮助它躲在阴凉处。科学家们认为,这种双重颜色的原因在于竹子的糟糕的饮食习惯,以及无法消化更广泛的植物。这就意味着大熊猫在冬天不能储存足够的脂肪去冬眠,就像一些熊一样。因此,它必须全年都处于活跃状态,长途跋涉,以及从雪山到热带森林的各种栖息地。然而,熊猫头部的斑纹并不是用来躲避捕食者的,而是用来交流的。黑暗的耳朵可能有助于传达一种凶猛的感觉,这是对捕食者的警告。它们的黑眼斑可以帮助它们认出对方,或者是向熊猫竞争对手发出信号。“这是我们团队的一项巨大的努力,他们发现了成千上万的图像,并从20多个可能的颜色中获得了超过10个区域,”合著者Ted Stankowich说,他是基社基长滩的助理教授。“有时候,要回答看似最简单的问题,需要数百小时的辛勤工作:为什么熊猫是黑白的?”其他的合著者包括来自加州州立大学的汉娜沃克、长滩、Megan Hendrix和来自加州大学戴维斯分校的Megan Hendrix。

  How Much Drought Can a Forest Take?

  Scientists from the University of California, Davis, and colleagues examined those questions in a study published in the journal Ecology Letters.Using climate data and aerial tree mortality surveys conducted by the U.S. Forest Service during four years (2012-2015) of extreme drought in California, they found that when a drought hits the region, trees growing in areas that are already dry are most susceptible.The research also showed that the effects of drought on forests can take years to surface, suggesting that such effects may linger even after the drought has ended.Southern Sierra Nevada trees are most vulnerable,The study said that trees in the driest and densest forests are the most at risk of dying in an extreme drought. In California, that makes crowded stands of trees in the Southern Sierra Nevada the most vulnerable in the state.The concept is simple: Trees in dense forests are like multiple straws competing for the same glass of water. In wet climate conditions, that competition goes largely unnoticed. But when it’s dry, few are able to quench their thirst, setting the stage for mass mortality.‘How much drought a tree can take’Animated GIF image“Our analysis found out how much drought a tree can take,” said UC Davis Ph.D. student Derek Young, who co-led the study with Jens Stevens, a UC Davis postdoctoral researcher during the study who is currently at UC Berkeley, and Mason Earles, a postdoctoral researcher at Yale University. “If forest managers want to get the biggest bang for their buck in reducing forest vulnerability to drought, this study suggests they should focus on the densest stands in the driest areas. And when we reestablish forests burned by severe wildfire in these areas, we should plant at lower densities from the beginning.”Tree mortality in the Sierra Nevada in 2015 was the worst in recorded history. The U.S. Forest Service aerial tree mortality surveys in 2015 estimated 29 million trees in California had died after four years of extreme drought.Though the drought began in 2012, major effects on trees did not appear immediately. While some trees died every year, mortality spiked only in the fourth year of extreme drought.Tree mortality a delayed reactionIn a blog post he wrote on the subject in May 2016, Young noted: “This observation highlights the fact that tree mortality can take several years to respond to drought. Such a delayed response is often observed in studies of drought stress, and the existence of this delayed response hints that we are likely to observe high mortality well into 2016 and potentially beyond, especially in Southern California.”Indeed, surveys conducted by the U.S. Forest Service in 2016 estimated an additional 62 million trees died that year.Other study co-authors include UC Davis associate professor Andrew Latimer, and Jeffrey Moore, Adam Ellis and Amy Jirka with the USDA Forest Service.Study authors were supported by a National Science Foundation Graduate Research Fellowship, EPA STAR Fellowship, and a USDA Hatch Project.

  研究成果三:干旱的地区的树木生长最容易受到影响

  来自加州大学戴维斯分校的科学家和他的同事在生态学杂志上发表的一项研究中对这些问题进行了研究。利用美国林务局在四年(2012-2015)期间对加州极端干旱进行的气候数据和空中树木死亡率调查,他们发现,当干旱袭击该地区时,那些已经干旱的地区的树木生长最容易受到影响。这项研究还表明,干旱对森林的影响可能需要数年时间,这表明即使干旱结束,这种影响也可能持续。内华达山脉南部的树木最为脆弱,该研究称,在最干旱和最密集的森林中,树木是最容易在极端干旱中死亡的。在加利福尼亚州,这使得位于内华达山脉南部的众多树木成为该州最脆弱的树木。这个概念很简单:在茂密的森林里,树木就像多根稻草,争夺同样的一杯水。在潮湿的气候条件下,这种竞争在很大程度上被忽视了。但是当它干燥的时候,几乎没有人能够解渴,从而为大规模的死亡埋下了伏笔。“一棵树能吃多少干旱?”2009年至2015年间,加州每平方英里每平方英里就有一棵死树。信贷:德里克年轻/加州大学戴维斯分校“我们的分析发现了一棵树能承受多大的干旱,”加州大学戴维斯分校的博士生,加州大学戴维斯分校的博士后研究员,同时也是加州大学伯克利分校的博士后研究员,同时也是耶鲁大学的博士后研究员Mason Earles。“如果森林管理者想要在减少森林易受干旱影响方面获得最大的收益,这项研究表明他们应该把重点放在最干旱地区的最密集的地方。”当我们在这些地区重建被严重野火烧毁的森林时,我们应该从一开始就处于较低的密度。”2015年内华达山脉的树死亡率是历史上最严重的。2015年,美国林务树死亡率调查估计,加州有2900万棵树在经历了4年的极度干旱后死亡。尽管干旱从2012年开始,但对树木的主要影响并没有立即显现。虽然每年都有一些树木死亡,但在极度干旱的第四年,死亡率却急剧上升。树死亡率延迟反应,在他于2016年5月撰写的一篇博客文章中,杨指出:“这一观察突出表明,树木的死亡可能需要数年的时间来应对干旱。在对干旱压力的研究中,人们往往会观察到这种延迟反应,而这种延迟反应的存在表明,我们很可能会在2016年,尤其是在南加州,看到高死亡率。”事实上,美国林务局在2016年进行的调查估计,今年又有6200万棵树木死亡。其他研究的合著者包括加州大学戴维斯分校的副教授Amy Jirka和杰弗里摩尔、亚当艾利斯和Andrew Latimer和美国农业部的森林服务。研究报告的作者得到了美国国家科学基金会研究生研究奖学金、美国环保署明星奖学金和美国农业部的孵化项目的支持。

  New Machine Simulates Human Digestion to Improve Nutrition.

  Designed and built by engineer and food scientist Gail Bornhorst, the novel device is providing clues that could help people make better decisions about when to eat, what to eat and how to prepare food to meet their own personal nutritional needs.“The body is a food-processing plant with a digestive system we know very little about,” said Bornhorst, an engineer and assistant professor in the departments of Biological and Agricultural Engineering, and Food Science and Technology. “We know a lot about the makeup of food as it goes in and comes out, but not much about what happens in between. Our goal is toquantitatively describe food breakdown, transport, and absorption to optimize food quality and functionality.”Why digestion mattersPeople want something from their food. Maybe we eat to feel full and energized. Maybe we want certain nutrients or extra protein in our meals. We can evaluate the properties in the food we consume — or trust the marketing and ingredients listed on a label — but in many cases it’s unclear how or if our bodies absorb the nutrients, additives and molecules we ingest.“We know how a tomato-processing plant works because we can stick sensors inside the tanks,” Bornhorst said. “It’s not so easy with human digestion.”Researchers are starting to find noninvasive ways to study digestion in live animals and humans using techniques such as magnetic resonance imaging, but the process is limited, costly and ethically controversial. Bornhorst’s lab is taking a different approach. Her research team members developed what they call the Human Gastric Simulator, a tabletop machine that mimics both the biochemical and physical conditions of a human digestive tract.“We can add acids and enzymes to the ‘stomach’ to simulate gastrointestinal fluids,” Bornhorst said, pointing to a liquid-filled, plastic bag at the center of the device. With the flip of a switch, she turns on a network of slow-moving cranks and plastic rollers that compress the cavity of the bag. “That mimics stomach contractions,” Bornhorst explained.Complexities of digestion,Bornhorst’s lab is testing a variety of fruits, vegetables and beverages to see how they move through the system. The researchers are also looking at how different cooking and processing methods such as boiling, steaming and frying influence the breakdown and transport of food.“Turns out, how you prepare your food influences digestion quite a bit,” Bornhorst said. “We’re even seeing digestive differences depending on which variety of raw apple you eat.”It’s too early for any sweeping conclusion, except maybe this: “Digestion is very complex,” Bornhorst said.“There are a lot of moving parts and many variables, even person to person,” she said. “We’re working to quantify the fundamental transport processes to better understand things like nutrient release and absorption rates.“When we have a more holistic understanding of human digestion, we can make more informed decisions about how to meet our nutritional needs,” Bornhorst added.

  研究成果四:新机器模拟人类消化以提高营养。

  这款新设备是由工程师和食品科学家Gail Bornhorst设计和建造的,它提供了一些线索,可以帮助人们更好地决定什么时候吃什么,吃什么,以及如何准备食物来满足自己的个人营养需求。“我们的身体是一种消化系统,我们知之甚少,”Bornhorst说,他是生物和农业工程和食品科学和技术部门的一名工程师和助理教授。他说:“我们对食物的组成了解很多,但却不知道两者之间会发生什么。我们的目标是定量描述食品的分解、运输和吸收,以优化食品质量和功能。”为什么消化问题,人们想从食物中得到一些东西。也许我们会吃得饱饱的。也许我们需要一些营养或额外的蛋白质。我们可以评估我们消费的食物的性质,或者信任标签上列出的市场和成分,但在很多情况下,我们的身体如何吸收营养、添加剂和我们摄取的分子,还不清楚。Bornhorst说:“我们知道一个西红柿加工厂是如何工作的,因为我们可以在坦克内部安装传感器。”“人类消化系统不是那么容易。”研究人员正开始寻找在活体动物和人类中使用磁共振成像等技术来研究消化的非侵入性方法,但这一过程是有限的、昂贵的和伦理上有争议的。Bornhorst的实验室正在采取不同的方法。她的研究团队成员开发了一种被称为“人体胃模拟器”的东西,这是一种能模拟人类消化道生化和生理状况的台式机器。Bornhorst说:“我们可以在胃里添加酸和酶来模拟肠道的液体。”他指着一个装满液体的塑料袋,在设备的中心。随着开关的翻转,她打开了一个由缓慢移动的曲柄和塑料滚轮组成的网络,这些滚轮可以压缩袋子的空腔。Bornhorst解释说:“这模拟了胃的收缩。”复杂的消化,Bornhorst的实验室正在测试各种水果、蔬菜和饮料,看看它们是如何在系统中移动的。研究人员还在研究不同的烹饪和加工方法,如煮、蒸、煎等,会影响食物的分解和运输。Bornhorst说:“事实证明,你如何准备食物对消化的影响很大。”“我们甚至看到了消化的差异,这取决于你吃的是哪种苹果。”Bornhorst说:“任何全面的结论都为时过早,但可能是这样的:“消化是非常复杂的。”她说:“有很多活动的部件和很多变量,甚至是人的。”“我们正在努力量化基本的运输过程,以便更好地了解营养释放和吸收率等因素。Bornhorst补充说:“当我们对人类的消化有更全面的理解时,我们可以做出更明智的决定,如何满足我们的营养需求。”

  Tiny Shells Indicate Big Changes to Global Carbon Cycle

  For the study, published in the journal Scientific Reports, scientists raised foraminifera — single-celled organisms about the size of a grain of sand — at the UC Davis Bodega Marine Laboratory under future, high CO2 conditions.These tiny organisms, commonly called “forams,” are ubiquitous in marine environments and play a key role in food webs and the ocean carbon cycle.,Stressed under future conditions.After exposing them to a range of acidity levels, UC Davis scientists found that under high CO2, or more acidic, conditions, the foraminifera had trouble building their shells and making spines, an important feature of their shells.They also showed signs of physiological stress, reducing their metabolism and slowing their respiration to undetectable levels.This is the first study of its kind to show the combined impact of shell building, spine repair, and physiological stress in foraminifera under high CO2 conditions. The study suggests that stressed and impaired foraminifera could indicate a larger scale disruption of carbon cycling in the ocean.Off balance.As a marine calcifier, foraminifera use calcium carbonate to build their shells, a process that plays an integral part in balancing the carbon cycle.scientists collect foraminiferaCatherine Davis and colleagues collect foraminifera to bring back for study at the UC Davis Bodega Marine Laboratory. (UC Davis)Normally, healthy foraminifera calcify their shells and sink to the ocean floor after they die, taking the calcite with them. This moves alkalinity, which helps neutralize acidity, to the seafloor.When foraminifera calcify less, their ability to neutralize acidity also lessens, making the deep ocean more acidic.But what happens in the deep ocean doesn’t stay in the deep ocean.Impacts for thousands of years“It’s not out-of-sight, out-of-mind,” said lead author Catherine Davis, a Ph.D. student at UC Davis during the study and currently a postdoctoral associate at the University of South Carolina. “That acidified water from the deep will rise again. If we do something that acidifies the deep ocean, that affects atmospheric and ocean carbon dioxide concentrations on time scales of thousands of years.”Davis said the geologic record shows that such imbalances have occurred in the world’s oceans before, but only during times of major change.“This points to one of the longer time-scale effects of anthropogenic climate change that we don’t understand yet,” Davis said.Upwelling brings ‘future conditions’ to surface,One way acidified water returns to the surface is through upwelling, when strong winds periodically push nutrient-rich water from the deep ocean up to the surface. Upwelling supports some of the planet’s most productive fisheries and ecosystems. But additional anthropogenic, or human-caused, CO2 in the system is expected to impact fisheries and coastal ecosystems.UC Davis’ Bodega Marine Laboratory in Northern California is near one of the world’s most intense coastal upwelling areas. At times, it experiences conditions most of the ocean isn’t expected to experience for decades or hundreds of years.“Seasonal upwelling means that we have an opportunity to study organisms in high CO2, acidic waters today — a window into how the ocean may look more often in the future,” said co-author Tessa Hill, an associate professor in earth and planetary sciences at UC Davis. “We might have expected that a species of foraminifera well-adapted to Northern California wouldn’t respond negatively to high CO2 conditions, but that expectation was wrong. This study provides insight into how an important marine calcifier may respond to future conditions, and send ripple effects through food webs and carbon cycling.”The study’s other co-authors include Emily Rivest from UC Davis and Virginia Institute of Marine Science, UC Davis professors Brian Gaylord and Eric Sanford, and UC Davis associate research scientist Ann Russell.The study was supported by the National Science Foundation and the Cushman Foundation Johanna M. Resig Fellowship.

  研究成果五:微小的贝壳表明全球碳循环发生了巨大变化

  在科学报告杂志上发表的这项研究中,科学家们在加州大学戴维斯博德加海洋实验室的高二氧化碳条件下,对一种沙粒大小的单细胞有机体进行了研究。这些微生物,通常被称为“forams”,在海洋环境中无处不在,在食物网和海洋碳循环中扮演着重要的角色。强调在未来条件下,加州大学戴维斯分校的科学家们发现,在高含量的二氧化碳或酸性环境下,它们的壳和刺都有变化,这是它们外壳的一个重要特征。他们也表现出了生理上的压力,减少了新陈代谢,减缓了呼吸到无法检测的水平。这是第一次在高二氧化碳条件下,对有壳的建筑、脊柱修复,和生理应力的综合影响进行研究。研究表明,有压力和有损伤的福兰尼弗拉可能会在海洋中出现更大规模的碳循环破坏。失去平衡,作为一种海洋钙化物质,foraminifera利用碳酸钙来构建外壳,这一过程在平衡碳循环过程中起着不可或缺的作用。科学家收集有孔虫,凯瑟琳戴维斯和他的同事们在加州大学戴维斯博德加海洋实验室收集了foraminifera的研究成果。(加州大学戴维斯分校)正常情况下,健康的有孔类植物会在它们死后将它们的外壳钙化,然后沉入海底,并带走方解石。这使得碱的碱度可以中和酸性,从而达到海底。当有孔的钙化变少时,它们中和酸性的能力也减弱了,使深海变得更酸。但是在深海中发生的事情并不会停留在深海。几千年的影响,该研究的主要作者、加州大学戴维斯分校的博士生凯瑟琳戴维斯说:“这并不是视线以外的事情。”她目前是南卡罗来纳大学的博士后研究员。“深海酸化的水会再次上升。”如果我们做一些使深海酸化的事情,那将影响大气和海洋的二氧化碳浓度在数千年的时间尺度上。”戴维斯说,地质记录显示,这种不平衡曾经在世界上的海洋中发生过,但只有在重大变化的时期才会发生。“这说明了人类气候变化的长期效应,我们还不了解,”戴维斯说。上升流带来了“未来的条件”一种酸化水的方式是通过上升流,当强风周期性地把富含营养的水从深海向上推到水面上来。上升流支撑着地球上最多产的渔业和生态系统。但是,在系统中增加的人为因素或人为因素,预计会对渔业和沿海生态系统造成影响。加州大学戴维斯分校的博德加海洋实验室位于世界上最强烈的沿海上升流区之一。有时,它会经历大多数海洋的状况,而这些条件在几十年或几百年里都不会出现。“季节性上升流意味着我们有机会研究高二氧化碳和酸性水域的生物,这是未来海洋可能更常见的一扇窗户,”Tessa Hill说,他是加州大学戴维斯分校的地球和行星科学副教授。“我们可能已经预料到,一种能够适应北加州的物种,不会对高二氧化碳环境做出负面的反应,但这种预期是错误的。”这项研究为我们提供了一个重要的视角,让我们了解一个重要的海洋钙剂如何应对未来的情况,并通过食物链和碳循环来产生连锁反应。”该研究的其他作者包括来自加州大学戴维斯和弗吉尼亚海洋科学研究所的Brian Gaylord,加州大学戴维斯分校的教授Emily Rivest和埃里克桑福德,以及加州大学戴维斯分校的研究科学家安拉塞尔。这项研究得到了美国国家科学基金会和库什曼基金会的支持。

  >>>请继续阅读第3页为加州大学戴维斯分校校园环境和杰出校友详细介绍。


分享

热门关注

留学英国选择哪个大学好 英国临海大学有哪些

热门临海院校

留学俄罗斯英语授课课程有哪些

俄罗斯英语授课课程

高中日本出国留学需要什么条件2021

留学日本高中

新加坡私立大学有哪些 留学新加坡私立大学介绍

新加坡私立大学介绍

新加坡大学有哪些知名大学

新加坡知名大学推荐

2021塔斯马尼亚大学优势解析

塔斯马尼亚大学优势

澳洲塔斯马尼亚大学怎么样

澳洲留学

美国西弗吉尼亚大学申请条件

美国大学申请

美国留学弗吉尼亚大学好不好

美国留学

美国罗格斯大学怎么样

美国罗格斯大学

热门问答